Advertisement
Clinical Study|Articles in Press

Varenicline mitigates the increased risk of pseudoarthrosis associated with nicotine

  • Author Footnotes
    # Current Address: Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT 84109, USA.
    Brian A. Karamian
    Correspondence
    Corresponding author: Brian A. Karamian, MD, Rothman Orthopaedic Institute, 925 Chestnut, 5th Floor, Philadelphia, PA 19107, USA.
    Footnotes
    # Current Address: Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT 84109, USA.
    Affiliations
    Rothman Orthopaedic Institute, 925 Chestnut, 5th Floor, Philadelphia, PA, 19107, USA

    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA

    Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
    Search for articles by this author
  • Hannah A. Levy
    Affiliations
    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA

    Department of Orthopaedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
    Search for articles by this author
  • Goutham R. Yalla
    Affiliations
    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Nicholas D. D'Antonio
    Affiliations
    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Jeremy C. Heard
    Affiliations
    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Mark J. Lambrechts
    Affiliations
    Rothman Orthopaedic Institute, 925 Chestnut, 5th Floor, Philadelphia, PA, 19107, USA

    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Jose A. Canseco
    Affiliations
    Rothman Orthopaedic Institute, 925 Chestnut, 5th Floor, Philadelphia, PA, 19107, USA

    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Alexander R. Vaccaro
    Affiliations
    Rothman Orthopaedic Institute, 925 Chestnut, 5th Floor, Philadelphia, PA, 19107, USA

    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Dessislava Z. Markova
    Affiliations
    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Christopher K. Kepler
    Affiliations
    Rothman Orthopaedic Institute, 925 Chestnut, 5th Floor, Philadelphia, PA, 19107, USA

    Department of Orthopaedic Surgery, Thomas Jefferson University, 1025 Walnut St #100, Philadelphia, PA 19107, USA
    Search for articles by this author
  • Author Footnotes
    # Current Address: Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT 84109, USA.

      Abstract

      BACKGROUND CONTEXT

      High serum nicotine levels increase the risk of nonunion after spinal fusion. Varenicline, a pharmaceutical adjunct for smoking cessation, is a partial agonist designed to displace and outcompete nicotine at its receptor binding site, thereby limiting downstream activation. Given its mechanism, varenicline may have therapeutic benefits in mitigating nonunion for active smokers undergoing spinal fusion.

      PURPOSE

      To compare fusion rate and fusion mass characteristics between cohorts receiving nicotine, varenicline, or concurrent nicotine and varenicline after lumbar fusion.

      STUDY DESIGN

      Rodent noninstrumented spinal fusion model.

      METHODS

      Sixty eight-week-old male Sprague-Dawley rats weighing approximately 300 grams underwent L4-5 posterolateral fusion (PLF) surgery. Four experimental groups (control: C, nicotine: N, varenicline: V, and combined: NV [nicotine and varenicline]) were included for analysis. Treatment groups received nicotine, varenicline, or a combination of nicotine and varenicline delivered through subcutaneous osmotic pumps beginning two weeks before surgery until the time of sacrifice at age 14 weeks. Manual palpation testing, microCT imaging, bone histomorphometry, and biomechanical testing were performed on harvested spinal fusion segments.

      RESULTS

      Control (p=0.016) and combined (p=0.032) groups, when compared directly to the nicotine group, demonstrated significantly greater manual palpation scores. The fusion rate in the control (93.3%) and combined (93.3%) groups were significantly greater than that of the nicotine group (33.3%) (p=0.007, both). Biomechanical testing demonstrated greater Young's modulus of the fusion segment in the control (17.1 MPa) and combined groups (34.5 MPa) compared to the nicotine group (8.07 MPa) (p<0.001, both). MicroCT analysis demonstrated greater bone volume fraction (C:0.35 vs. N:0.26 vs. NV:0.33) (p<0.001, all) and bone mineral density (C:335 vs. N:262 vs. NV:328 mg Ha/cm3) (p<0.001, all) in the control and combined groups compared to the nicotine group. Histomorphometry demonstrated a greater mineral apposition rate in the combined group compared to the nicotine group (0.34 vs. 0.24 μm/day, p=0.025).

      CONCLUSION

      In a rodent spinal fusion model, varenicline mitigates the adverse effects of high nicotine serum levels on the rate and quality of spinal fusion.

      CLINICAL SIGNIFICANCE

      These findings have the potential to significantly impact clinical practice guidelines and the use of pharmacotherapy for active nicotine users undergoing fusion surgery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Spine Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Soriano JC
        • Revuelta MS
        • Fuente MF
        • Díaz IC
        • Ureña PM
        • Meneses RD.
        Predictors of outcome after decompressive lumbar surgery and instrumented posterolateral fusion.
        Eur Spine J. 2010; 19: 1841-1848https://doi.org/10.1007/s00586-010-1284-2
        • Sandén B
        • Försth P
        • Michaëlsson K.
        Smokers Show less improvement than nonsmokers two years after surgery for lumbar spinal stenosis.
        Spine. 2011; 36: 1059-1064https://doi.org/10.1097/brs.0b013e3181e92b36
        • Jazini E
        • Glassman SD
        • Bisson EF
        • Potts EA
        • Carreon LY.
        do former smokers exhibit a distinct profile before and after lumbar spine surgery & quest.
        Spine. 2018; 43: 201-206https://doi.org/10.1097/brs.0000000000002293
        • Brown CW
        • Ormie TJ
        • Richardson HD.
        The rate of pseudarthrosis (surgical nonunion) in patients who are smokers and patients who are nonsmokers: a comparison study.
        Spine. 1986; 11: 942-943https://doi.org/10.1097/00007632-198611000-00015
        • Hilibrand AS
        • Fye MA
        • Emery SE
        • Palumbo MA
        • Bohlman HH.
        Impact of smoking on the outcome of anterior cervical arthrodesis with interbody or strut-grafting.
        J Bone Jt Surgery Am. 2001; 83: 668-673https://doi.org/10.2106/00004623-200105000-00004
        • Glassman SD
        • Anagnost SC
        • Parker A
        • Burke D
        • Johnson JR
        • Dimar JR.
        The effect of cigarette smoking and smoking cessation on spinal fusion.
        Spine. 2000; 25: 2608-2615https://doi.org/10.1097/00007632-200010150-00011
        • Coe JW
        • Brooks PR
        • Vetelino MG
        • Wirtz MC
        • Arnold EP
        • Huang J
        • et al.
        Varenicline: an α4β2 nicotinic receptor partial agonist for smoking cessation.
        J Med Chem. 2005; 48: 3474-3477https://doi.org/10.1021/jm050069n
        • Ducy P
        • Amling M
        • Takeda S
        • Priemel M
        • Schilling AF
        • Beil FT
        • et al.
        Leptin inhibits bone formation through a hypothalamic relay a central control of bone mass.
        Cell. 2000; 100: 197-207https://doi.org/10.1016/s0092-8674(00)81558-5
        • Thomas T
        • Gori F
        • Khosla S
        • Jensen MD
        • Burguera B
        • Riggs BL.
        Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes 1.
        Endocrinology. 1999; 140: 1630-1638https://doi.org/10.1210/endo.140.4.6637
        • Cornish J
        • Callon K
        • Bava U
        • Lin C
        • Naot D
        • Hill B
        • et al.
        Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo.
        J Endocrinol. 2002; 175: 405-415https://doi.org/10.1677/joe.0.1750405
        • Holloway WR
        • Collier FMcL
        • Aitken CJ
        • Myers DE
        • Hodge JM
        • Malakellis M
        • et al.
        Leptin inhibits osteoclast generation.
        J Bone Miner Res. 2002; 17: 200-209https://doi.org/10.1359/jbmr.2002.17.2.200
        • Gordeladze JO
        • Drevon CA
        • Syversen U
        • Reseland JE.
        Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling.
        J Cell Biochem. 2002; 85: 825-836https://doi.org/10.1002/jcb.10156
        • Wessler I
        • Kirkpatrick CJ.
        Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans.
        Brit J Pharmacol. 2008; 154: 1558-1571https://doi.org/10.1038/bjp.2008.185
        • Hoogduijn MJ
        • Cheng A
        • Genever PG.
        Functional nicotinic and muscarinic receptors on mesenchymal stem cells.
        Stem Cells Dev. 2009; 18: 103-112https://doi.org/10.1089/scd.2008.0032
        • En-Nosse M
        • Hartmann S
        • Trinkaus K
        • Alt V
        • Stigler B
        • Heiss C
        • et al.
        Expression of non-neuronal cholinergic system in osteoblast-like cells and its involvement in osteogenesis.
        Cell Tissue Res. 2009; 338: 203-215https://doi.org/10.1007/s00441-009-0871-1
        • Eimar H
        • Tamimi I
        • Murshed M
        • Tamimi F.
        Cholinergic regulation of bone.
        J Musculoskel Neuron. 2013; 13: 124-132
        • Jordan CJ
        • Xi Z-X.
        Discovery and development of varenicline for smoking cessation.
        Expert Opin Drug Dis. 2018; 13: 1-12https://doi.org/10.1080/17460441.2018.1458090
        • Borovikova LV
        • Ivanova S
        • Zhang M
        • Yang H
        • Botchkina GI
        • Watkins LR
        • et al.
        Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.
        Nature. 2000; 405: 458-462https://doi.org/10.1038/35013070
        • Wang H
        • Yu M
        • Ochani M
        • Amella CA
        • Tanovic M
        • Susarla S
        • et al.
        Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation.
        Nature. 2003; 421: 384-388https://doi.org/10.1038/nature01339
        • Jonge WJ
        • Ulloa L.
        The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation.
        Brit J Pharmacol. 2007; 151: 915-929https://doi.org/10.1038/sj.bjp.0707264
        • Tracey KJ.
        Physiology and immunology of the cholinergic antiinflammatory pathway.
        J Clin Invest. 2007; 117: 289-296https://doi.org/10.1172/jci30555
        • Fernandez R
        • Nardocci G
        • Navarro C
        • Reyes EP
        • Acuña-Castillo C
        • Cortes PP.
        Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy.
        Front Physiol. 2014; 5: 489https://doi.org/10.3389/fphys.2014.00489
        • Mandl P
        • Hayer S
        • Karonitsch T
        • Scholze P
        • Győri D
        • Sykoutri D
        • et al.
        Nicotinic acetylcholine receptors modulate osteoclastogenesis.
        Arthritis Res Ther. 2016; 18: 63https://doi.org/10.1186/s13075-016-0961-x
        • Baumann L
        • Kauschke V
        • Vikman A
        • Dürselen L
        • Krasteva-Christ G
        • Kampschulte M
        • et al.
        Deletion of nicotinic acetylcholine receptor alpha9 in mice resulted in altered bone structure.
        Bone. 2018; 120: 285-296https://doi.org/10.1016/j.bone.2018.11.003
        • Mito K
        • Sato Y
        • Kobayashi T
        • Miyamoto K
        • Nitta E
        • Iwama A
        • et al.
        The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass.
        Sci Rep-Uk. 2017; 7: 45597https://doi.org/10.1038/srep45597
        • Hapidin H
        • Othman F
        • Soelaiman I-N
        • Shuid AN
        • Luke DA
        • Mohamed N
        Negative effects of nicotine on bone-resorbing cytokines and bone histomorphometric parameters in male rats.
        J Bone Miner Metab. 2007; 25: 93-98https://doi.org/10.1007/s00774-006-0733-9
        • Hukkanen J
        • Jacob P
        • Benowitz NL.
        Metabolism and disposition kinetics of nicotine.
        Pharmacol Rev. 2005; 57: 79-115https://doi.org/10.1124/pr.57.1.3
        • Dobrinas M
        • Choong E
        • Noetzli M
        • Cornuz J
        • Ansermot N
        • Eap CB.
        Quantification of nicotine, cotinine, trans-3′-hydroxycotinine and varenicline in human plasma by a sensitive and specific UPLC–tandem mass-spectrometry procedure for a clinical study on smoking cessation.
        J Chromatogr B. 2011; 879: 3574-3582https://doi.org/10.1016/j.jchromb.2011.09.046
        • Kang J
        • Glaeser JD
        • Karamian B
        • Kanim L
        • NaPier Z
        • Koltsov J
        • et al.
        The effects of varenicline on lumbar spinal fusion in a rat model.
        Spine J. 2019; 20: 300-306https://doi.org/10.1016/j.spinee.2019.07.015
        • George O
        • Lloyd A
        • Carroll FI
        • Damaj MI
        • Koob GF.
        Varenicline blocks nicotine intake in rats with extended access to nicotine self-administration.
        Psychopharmacology. 2011; 213: 715-722https://doi.org/10.1007/s00213-010-2024-3
        • Funk D
        • Lo S
        • Coen K
        • Lê AD.
        Effects of varenicline on operant self-administration of alcohol and/or nicotine in a rat model of co-abuse.
        Behav Brain Res. 2016; 296: 157-162https://doi.org/10.1016/j.bbr.2015.09.009
        • O'Connor EC
        • Parker D
        • Rollema H
        • Mead AN.
        The α4β2 nicotinic acetylcholine-receptor partial agonist varenicline inhibits both nicotine self-administration following repeated dosing and reinstatement of nicotine seeking in rats.
        Psychopharmacology. 2010; 208: 365-376https://doi.org/10.1007/s00213-009-1739-5
        • EL-Hellani A
        • Salman R
        • El-Hage R
        • Talih S
        • Malek N
        • Baalbaki R
        • et al.
        Nicotine and carbonyl emissions from popular electronic cigarette products: correlation to liquid composition and design characteristics.
        Nicotine Tob Res. 2016; 20: ntw280https://doi.org/10.1093/ntr/ntw280
        • Kasza KA
        • Ambrose BK
        • Conway KP
        • Borek N
        • Taylor K
        • Goniewicz ML
        • et al.
        Tobacco-product use by adults and youths in the United States in 2013 and 2014.
        New Engl J Medicine. 2017; 376: 342-353https://doi.org/10.1056/nejmsa1607538
        • Villarroel MA
        • Cha AE
        • Vahratian A.
        NCHS Data Brief.
        Electronic Cigarette Use Among U.S. Adults. 365. National Center for Health Statistics., Hyattsville, MD2018 (n.d)
        • Carlson BB
        • Burton DC
        • Jackson RS
        • Robinson S.
        Recidivism rates after smoking cessation before spinal fusion.
        Orthopedics. 2016; 39: e318-e322https://doi.org/10.3928/01477447-20160301-03
        • Barufaldi LA
        • Guerra RL
        • Albuquerque R de CR de
        • Nascimento A
        • Chança RD
        • Souza MC de
        • et al.
        Risk of smoking relapse with the use of electronic cigarettes: a systematic review with meta-analysis of longitudinal studies.
        Tob Prev Cessat. 2021; 7: 1-10https://doi.org/10.18332/tpc/132964
        • Ebbert JO
        • Wyatt KD
        • Hays JT
        • Klee EW
        • Hurt RD.
        Varenicline for smoking cessation: efficacy, safety, and treatment recommendations.
        Patient Prefer Adher. 2010; 4: 355-362https://doi.org/10.2147/ppa.s10620
        • Faessel HM
        • Obach RS
        • Rollema H
        • Ravva P
        • Williams KE
        • Burstein AH.
        A Review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation.
        Clin Pharmacokinet. 2010; 49: 799-816https://doi.org/10.2165/11537850-000000000-00000
        • Ravva P
        • Gastonguay MR
        • Tensfeldt TG
        • Faessel HM.
        Population pharmacokinetic analysis of varenicline in adult smokers.
        Brit J Clin Pharmaco. 2009; 68: 669-681https://doi.org/10.1111/j.1365-2125.2009.03520.x
        • El-Zawawy HB
        • Gill CS
        • Wright RW
        • Sandell LJ.
        Smoking delays chondrogenesis in a mouse model of closed tibial fracture healing.
        J Orthopaed Res. 2006; 24: 2150-2158https://doi.org/10.1002/jor.20263
        • Donigan JA
        • Fredericks DC
        • Nepola JV
        • Smucker JD.
        The effect of transdermal nicotine on fracture healing in a rabbit model.
        J Orthop Trauma. 2012; 26: 724-727https://doi.org/10.1097/bot.0b013e318270466f
        • Wing KJ
        • Fisher CG
        • O'Connell JX
        • Wing PC
        Stopping nicotine exposure before surgery.
        Spine. 2000; 25: 30https://doi.org/10.1097/00007632-200001010-00007
        • Adams CI
        • Keating JF
        • Court-brown CM
        Cigarette smoking and open tibial fractures.
        Inj. 2001; 32: 61-65https://doi.org/10.1016/s0020-1383(00)00121-2
        • Castillo RC
        • Bosse MJ
        • MacKenzie EJ
        • Patterson BM.
        Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures.
        J Orthop Trauma. 2005; 19: 151-157https://doi.org/10.1097/00005131-200503000-00001
        • McKee MD
        • DiPasquale DJ
        • Wild LM
        • Stephen DJG
        • Kreder HJ
        • Schemitsch EH.
        The effect of smoking on clinical outcome and complication rates following ilizarov reconstruction.
        J Orthop Trauma. 2003; 17: 663-667https://doi.org/10.1097/00005131-200311000-00001
        • Rose PS
        • Adams CR
        • Torchia ME
        • Jacofsky DJ
        • Haidukewych GG
        • Steinmann SP.
        Locking plate fixation for proximal humeral fractures: initial results with a new implant.
        J Shoulder Elb Surg. 2007; 16: 202-207https://doi.org/10.1016/j.jse.2006.06.006
        • Chen F
        • Osterman AL
        • Mahony K.
        Smoking and bony union after ulna-shortening osteotomy.
        Am J Orthop Belle Mead N J. 2001; 30: 486-489
        • France JC
        • Norman TL
        • Buchanan MM
        • Scheel M
        • Veale M
        • Ackerman ES
        • et al.
        Direct current stimulation for spine fusion in a nicotine exposure model.
        Spine J. 2006; 6: 7-13https://doi.org/10.1016/j.spinee.2005.05.380
        • Daffner SD
        • Waugh S
        • Norman TL
        • Mukherjee N
        • France JC.
        Nicotine increases osteoblast activity of induced bone marrow stromal cells in a dose-dependent manner: an in vitro cell culture experiment.
        Global Spine J. 2012; 2: 153-158https://doi.org/10.1055/s-0032-1326946
        • Yuhara S
        • Kasagi S
        • Inoue A
        • Otsuka E
        • Hirose S
        • Hagiwara H.
        Effects of nicotine on cultured cells suggest that it can influence the formation and resorption of bone.
        Eur J Pharmacol. 1999; 383: 387-393https://doi.org/10.1016/s0014-2999(99)00551-8
        • Kanemura T
        • Matsumoto A
        • Ishikawa Y
        • Yamaguchi H
        • Satake K
        • Ito Z
        • et al.
        Radiographic changes in patients with pseudarthrosis after posterior lumbar interbody arthrodesis using carbon interbody cages.
        J Bone Jt Surg Inc. 2014; 96: e82https://doi.org/10.2106/jbjs.l.01527