Systematic Review / Meta-Analysis| Volume 23, ISSUE 6, P868-876, June 2023

Download started.


The use of MRI, PET/CT, and nuclear scintigraphy in the imaging of pyogenic native vertebral osteomyelitis: a systematic review and meta-analysis

Published:February 06, 2023DOI:


      Background Context

      Native vertebral osteomyelitis (NVO) is a severe infection with an increasing incidence globally. Although there is no widely agreed upon reference standard for diagnosis of the disease, imaging plays a crucial role. Magnetic resonance imaging (MRI) is currently the imaging modality of choice. In recent years, advances in imaging have allowed for a larger role for alternative imaging techniques in the setting of NVO.


      Our aim was to evaluate the diagnostic accuracy of MRI, PET/CT, and nuclear imaging, namely 67Gallium and 99mTechnetium scintigraphy, in the diagnosis of pyogenic NVO.

      Study Design/Setting

      We conducted a systematic review of five medical databases and included all studies from 1970 to September 2021 that compared imaging techniques and provided sufficient data for diagnostic test accuracy meta-analysis.


      Abstract screening, full text review, and data extraction were done by a pair of independent reviewers. Nonnative and nonpyogenic patients were excluded. A bivariate random effect model was used for meta-analysis.


      Twenty studies were included in the meta-analysis, encompassing a total of 1,123 imaging studies. The meta-analysis sensitivity and specificity of MRI were 90% and 72% respectively; those of PET/CT were 93% and 80%; those of 67Ga were 95% and 88%; those of 99mTc were 86% and 39%; and the sensitivity and specificity of combined Ga and Tc were 91% and 92% respectively in the setting of suspected NVO.


      67Ga has the highest sensitivity for NVO, and its specificity is augmented when combined with 99mTc. MRI and PET/CT are both highly sensitive modalities, although the specificity of PET/CT is slightly better. MRI remains an appropriate initial test depending on the availability of other modalities.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Spine Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Zimmerli W.
        Vertebral osteomyelitis.
        N Engl J Med. 2010; 362: 1022-1029
        • Akiyama T.
        • et al.
        Incidence and risk factors for mortality of vertebral osteomyelitis: a retrospective analysis using the Japanese diagnosis procedure combination database.
        BMJ Open. 2013; 3: 1-6
        • Maamari J.
        • Tande A.J.
        • Diehn F.
        • Tai D.B.G.
        • Berbari E.F.
        Diagnosis of vertebral osteomyelitis.
        J Bone Joint Infect. 2022; 7: 23-32
        • Berbari E.F.
        • Kanj S.S
        • Kowalski T.J.
        • Darouiche R.O.
        • Widmer A.F.
        • Schmitt S.K
        • et al.
        2015 Infectious Diseases Society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults.
        Clin Infect Dis. 2015; 61: e26-e46
        • Modic M.T.
        • Feiglin D.H.
        • Piraino DW
        • Boumphrey F.
        • Weinstein M.A.
        • Duchesneau P.M.
        • et al.
        Vertebral osteomyelitis - assessment using MR.
        Radiology. 1985; 157: 157-166
        • Jean M.
        • Irisson J.O.
        • Gras G.
        • Bouchand F.
        • Simo D.
        • Duran C.
        • et al.
        Diagnostic delay of pyogenic vertebral osteomyelitis and its associated factors.
        Scand J Rheumatol. 2017; 46: 64-68
        • McHenry M.C.
        • Easley K.A.
        • Locker G.A.
        Vertebral osteomyelitis: long-term outcome for 253 patients from 7 Cleveland-area hospitals.
        Clin Infect Dis. 2002; 34: 1342-1350
        • Altini C.
        • Lavelli V.
        • Niccoli-Asabella A.
        • Sardaro A.
        • Branca A.
        • Santo G.
        • et al.
        Comparison of the diagnostic value of MRI and whole body (18)F-FDG PET/CT in diagnosis of spondylodiscitis.
        J Clin Med. 2020; 9: 1-10
        • Kouijzer I.J.E.
        • Scheper H.
        • de Rooy J.W.J.
        • Bloem J.L.
        • Janssen M.J.R.
        • van den Hoven L.
        • et al.
        The diagnostic value of (18)F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis - a prospective study.
        Eur J Nucl Med Mol Imaging. 2018; 45: 798-805
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        BMJ. 2021; 372: n71
        • Kwon Y.
        • Lemieux M.
        • McTavish J.
        • Wathen J.
        Identifying and removing duplicate records from systematic review searches.
        J Med Libr Assoc. 2015; 103: 184-188
        • Sonmezoglu K.
        • Sonmezoglu M.
        • Halac M.
        • Akgun I.
        • Turkmen C.
        • Onsel C.
        • et al.
        Usefulness of 99mTc-ciprofloxacin (infecton) scan in diagnosis of chronic orthopedic infections: comparative study with 99mTc-HMPAO leukocyte scintigraphy.
        J Nucl Med. 2001; 42: 567-574
        • Rondier J.
        • Cayla J.
        • Bok B.
        • Bouchareb A.
        Value of strontium 87 m bone scintigraphy for the diagnosis of infectious spondylodiskitis (or spondylitis)).
        Rev Rhum Mal Osteoartic. 1974; 41: 427-439
        • Dillmann-Arroyo C.
        • Cantu-Leal R.
        • Campa-Nunez H.
        • Lopez-Cavazos C.
        • Bermudez-Arguelles M.
        • Mejia-Herrera J.C.
        Application of the ubiquicidin 29-41 scan in the diagnosis of pyogenic vertebral osteomyelitis.
        Acta Ortop Mex. 2011; 25: 27-31
        • Whiting P.F.
        • Rutjes A.W.
        • Westwood M.E.
        • Mallett S.
        • Deeks J.J.
        • Reitsma J.B.
        • et al.
        QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.
        Ann Intern Med. 2011; 155: 529-536
        • Reitsma J.B.
        • Glas A.S.
        • Rutjes A.W.
        • Scholten R.J.
        • Bossuyt P.M.
        • Zwinderman A.H.
        Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.
        J Clin Epidemiol. 2005; 58: 982-990
        • Schmitz A.
        • Risse J.H.
        • Grunwald F.
        • Gassel F.
        • Biersack H.J.
        • Schmitt O.
        Fluorine-18 fluorodeoxyglucose positron emission tomography findings in spondylodiscitis: preliminary results.
        Eur Spine J. 2001; 10: 534-539
        • Smids C.
        • Koujizer I.J.
        • Vos F.J.
        • Sprong T.
        • Hosman A.J.
        • de Rooy J.W.
        • et al.
        A comparison of the diagnostic value of MRI and (18)F-FDG-PET/CT in suspected spondylodiscitis.
        Infection. 2017; 45: 41-49
        • Panyaping T.
        • Wansophonkul S.
        • Tuntiyatorn L.
        Role of diffusion-weighted MR imaging in differentiation of infectious spondylodiscitis and spinal malignancy.
        J Med Assoc Thai. 2018; 101: 351-360
        • De la Garza Ramos R.
        • Goodwin C.R.
        • Abu-Bonsrah N.
        • Bydon A.
        • Witham T.F.
        • Wolinsky J.-P.
        • et al.
        The epidemiology of spinal tuberculosis in the United States: an analysis of 2002–2011 data.
        J Neurosurg Spine. 2017; 26: 507-512
        • Kim S.J.
        • Pak K.
        • Kim K.
        • Lee S.J.
        Comparing the diagnostic accuracies of F-18 fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for the detection of spondylodiscitis: a meta-analysis.
        Spine (Phila Pa 1976). 2019; 44: E414-e422
        • Seifen T.
        • Rettenbacher L.
        • Thaler C.
        • Holzmannhofer J.
        • McCoy M.
        • Pirich C.
        Prolonged back pain attributed to suspected spondylodiscitis. The value of 18F-FDG PET/CT imaging in the diagnostic work-up of patients.
        Nuklearmedizin. 2012; 51: 194-200
        • Ledermann H.P.
        • Schweitzer M.E.
        • Morrison W.B.
        • Carrino J.A.
        MR imaging findings in spinal infections: rules or myths?.
        Radiology. 2003; 228: 506-514
        • Mahnken A.H.
        • Wildberger J.E.
        • Adam G.
        • Stanzel S.
        • Schmitz-Rode T.
        • Gunter R.W.
        • et al.
        Is there a need for contrast-enhanced T1-weighted MRI of the spine after inconspicuous short tau inversion recovery imaging?.
        Eur Radiol. 2005; 15: 1387-1392
      1. Radiology, A.C.O., ACR appropriate ness criteria: suspected spine infection. 2021.

        • Longo M.
        • Granata F.
        • Ricciardi K.
        • Gaeta M.
        • Blandino A.
        Contrast-enhanced MR imaging with fat suppression in adult-onset septic spondylodiscitis.
        Eur Radiol. 2003; 13: 626-637
        • Kihira S.
        • Koo C.
        • Mahmoudi K.
        • Leong T.
        • Mei X.
        • Rigney B.
        • et al.
        Combination of imaging features and clinical biomarkers predicts positive pathology and microbiology findings suggestive of spondylodiscitis in patients undergoing image-guided percutaneous biopsy.
        AJNR Am J Neuroradiol. 2020; 41: 1316-1322
        • Tamm A.S.
        • Abele J.T.
        Bone and gallium single-photon emission computed tomography-computed tomography is equivalent to magnetic resonance imaging in the diagnosis of infectious spondylodiscitis: a retrospective study.
        Can Assoc Radiol J. 2017; 68: 41-46
        • Lazzeri E.
        • Erba P.
        • Perri M.
        • Doria R.
        • Tascini C.
        • Mariani G.
        Clinical impact of SPECT/CT with In-111 biotin on the management of patients with suspected spine infection.
        Clin Nucl Med. 2010; 35: 12-17
        • Fahnert J.
        • Purz S.
        • Jarvers J.S.
        • Heyde C.E.
        • Barthel H.
        • Stumpp P.
        • et al.
        Use of simultaneous 18F-FDG PET/MRI for the detection of spondylodiskitis.
        J Nucl Med. 2016; 57: 1396-1401
      2. Higgins JP. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. 2011,

        • Diehn F.E.
        Imaging of spine infection.
        Radiol Clin North Am. 2012; 50: 777-798
        • Viglialoro R.
        • Marciano A.
        • Bartoli F.
        • Erba P.
        • Lazzeri E.
        Role of [18F]FDG-PET/CT in the diagnosis of spondylodiscitis.
        Eur J Nucl Med Mol Imaging. 2020; 47: S461
        • Bruschwein D.A.
        • et al.
        Gallium scintigraphy in the evaluation of disk-space infections: concise communication.
        J Nucl Med. 1980; 21: 925-927
        • Palestro C.J.
        • et al.
        Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy.
        J Nucl Med. 1991; 32: 1861-1865
        • Whalen J.L.
        • et al.
        Limitations of indium leukocyte imaging for the diagnosis of spine infections.
        Spine (Phila Pa 1976). 1991; 16: 193-197
        • De Korvin B.
        • et al.
        [Aspects and value of MRI in the diagnosis and follow-up of common microbes infectious spondylodiscitis. Apropos of 25 clinically and biologically suspected patients].
        J Radiol. 1994; 75: 267-277
        • Hadjipavlou A.G.
        • Cesani-Vazquez F.
        • Villnaueva-Meyer J.
        • Mader J.T.
        • Necessary J.T.
        • Crow W.
        • et al.
        The effectiveness of gallium citrate Ga 67 radionuclide imaging in vertebral osteomyelitis revisited.
        Am J Orthop (Belle Mead NJ). 1998; 27: 179-183
        • Love C.
        • Patel M.
        • Lonner B.S.
        • Tomas M.B.
        • Palestro C.J.
        Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging.
        Clin Nucl Med. 2000; 25: 963-977
        • Lazzeri E.
        • et al.
        Scintigraphic imaging of vertebral osteomyelitis with 111in-biotin.
        Spine (Phila Pa 1976). 2008; 33: E198-204
        • Skanjeti A.
        • et al.
        PET in the clinical work-up of patients with spondylodiscitis: a new tool for the clinician?.
        Q J Nucl Med Mol Imaging. 2012; 56: 569-576
        • Fuster D.
        • et al.
        A prospective study comparing whole-body FDG PET/CT to combined planar bone scan with 67Ga SPECT/CT in the Diagnosis of Spondylodiskitis.
        Clin Nucl Med. 2012; 37: 827-832
        • Nakahara M.
        • Ito M.
        • Hattori N.
        • Magota K.
        • Takahata M.
        Nagahama K.,et al. 18F-FDG-PET/CT better localizes active spinal infection than MRI for successful minimally invasive surgery.
        Acta Radiol. 2015; 56: 829-836
        • Fuster D.
        • et al.
        Prospective comparison of whole-body (18)F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis.
        Eur J Nucl Med Mol Imaging. 2015; 42: 264-271
        • Demirev A.
        • et al.
        Comparison of [18 F]FDG PET/CT and MRI in the diagnosis of active osteomyelitis.
        Skeletal Radiol. 2014; 43: 665-672