Advertisement

Unexpected intraoperative positive culture (UIPC) in presumed aseptic revision spine surgery: A systematic review and meta-analysis

Published:November 03, 2022DOI:https://doi.org/10.1016/j.spinee.2022.10.016

      Abstract

      BACKGROUND CONTEXT

      Unexpected intraoperative positive culture (UIPC) has recently become increasingly common in revision spine surgery, being implicated as an etiological factor in revision spine surgery indications such as implant failure or pseudoarthrosis.

      PURPOSE

      Utilizing the available literature, this study aimed to investigate the prevalence of UIPC, and its clinical importance in patients following presumed aseptic revision spine surgery.

      STUDY DESIGN

      Meta-analysis and systematic review.

      METHODS

      Multiple databases and reference articles were searched until May 2022. The primary outcome was the pooled rate of UIPC, and the secondary outcomes were the microbiological profile of UIPC, the risk factors of UIPC, and the clinical fate of UIPC.

      RESULTS

      Twelve studies were eligible for meta-analysis, with a total of 1,108 patients. The pooled rate of UIPC was 24.3% (95% CI=15.8%–35.5%) in adult patients, and 43.2% (95% CI=32.9%–54.2%) in pediatric patients. The UIPC rate was higher when both conventional wound culture and sonication were used together compared to sonication alone or conventional wound culture alone. The rates were 28.9%, 23.6%, and 15.5 %, respectively. In adult and pediatric patients, the most commonly cultured organism was Cutibacterium acnes (42.5% vs 57.7%), followed by coagulase-negative Staphylococcus (39.9% vs 30.5%). Male patients had a higher rate of UIPC (OR= 2.6, 95% CI=1.84–3.72, p<.001), as did patients with a longer fusion construct (MD=0.76, 95% CI=0.27–1.25, p<.001).

      CONCLUSIONS

      The pooled rate of UIPC in aseptic spine revision surgery was 24.3% and 43.2% in adult and pediatric patients respectively. The most common organisms were C. acnes and coagulase-negative Staphylococcus. The impact of UIPC on patients` clinical outcomes is not fully understood. We are not able to recommend routine culture in revision spine surgery, however, adding sonication may aid in the diagnosis of UIPC. There is not enough evidence to recommend specific treatment strategies at this time, and further studies are warranted.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Spine Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rajaee SS
        • Kanim LEA
        • Bae HW.
        National trends in revision spinal fusion in the USA: patient characteristics and complications.
        Bone Joint J. 2014; 96-B: 807-816https://doi.org/10.1302/0301-620X.96B6.31149
        • Mok JM
        • Cloyd JM
        • Bradford DS
        • Deviren V
        • Smith JA
        • Tay B
        • et al.
        Reoperation after primary fusion for adult spinal deformity: rate, reason, and timing.
        Spine (Phila Pa 1976). 2009; 34: 832-839https://doi.org/10.1097/BRS.0b013e31819f2080
        • Lehmann TR
        • Spratt KF
        • Tozzi JE
        • Weinstein JN
        • Reinarz SJ
        • el-Khoury GY
        • et al.
        Long-term follow-up of lower lumbar fusion patients.
        Spine (Phila Pa 1976). 1987; 12: 97-104https://doi.org/10.1097/00007632-198703000-00004
        • Pichelmann MA
        • Lenke LG
        • Bridwell KH
        • Good CR
        • O'Leary PT
        • Sides BA
        Revision rates following primary adult spinal deformity surgery: six hundred forty-three consecutive patients followed-up to twenty-two years postoperative.
        Spine (Phila Pa 1976). 2010; 35: 219-226https://doi.org/10.1097/BRS.0b013e3181c91180
        • Zhu F
        • Bao H
        • Liu Z
        • Bentley M
        • Zhu Z
        • Ding Y
        • et al.
        Unanticipated revision surgery in adult spinal deformity: an experience with 815 cases at one institution.
        Spine (Phila Pa 1976). 2014; 39 (Spec No): B36-B44https://doi.org/10.1097/BRS.0000000000000463
        • Kelly MP
        • Lenke LG
        • Bridwell KH
        • Agarwal R
        • Godzik J
        • Koester L.
        Fate of the adult revision spinal deformity patient: a single institution experience.
        Spine (Phila Pa 1976). 2013; 38: E1196-E1200https://doi.org/10.1097/BRS.0b013e31829e764b
        • Larsen LH
        • Lange J
        • Xu Y
        • Schønheyder HC.
        Optimizing culture methods for diagnosis of prosthetic joint infections: a summary of modifications and improvements reported since 1995.
        J Med Microbiol. 2012; 61: 309-316https://doi.org/10.1099/jmm.0.035303-0
        • Rohacek M
        • Weisser M
        • Kobza R
        • Schoenenberger AW
        • Pfyffer GE
        • Frei R
        • et al.
        Bacterial colonization and infection of electrophysiological cardiac devices detected with sonication and swab culture.
        Circulation. 2010; 121: 1691-1697https://doi.org/10.1161/CIRCULATIONAHA.109.906461
        • Rieger UM
        • Pierer G
        • Lüscher NJ
        • Trampuz A.
        Sonication of removed breast implants for improved detection of subclinical infection.
        Aesthetic Plast Surg. 2009; 33: 404-408https://doi.org/10.1007/s00266-009-9333-0
        • Tunney MM
        • Patrick S
        • Gorman SP
        • Nixon JR
        • Anderson N
        • Davis RI
        • et al.
        Improved detection of infection in hip replacements. A currently underestimated problem.
        J Bone Joint Surg Br. 1998; 80: 568-572https://doi.org/10.1302/0301-620x.80b4.8473
        • Nair SP
        • Meghji S
        • Wilson M
        • Reddi K
        • White P
        • Henderson B.
        Bacterially induced bone destruction: mechanisms and misconceptions.
        Infect Immun. 1996; 64: 2371-2380https://doi.org/10.1128/iai.64.7.2371-2380.1996
        • Davies D.
        Understanding biofilm resistance to antibacterial agents.
        Nat Rev Drug Discov. 2003; 2: 114-122https://doi.org/10.1038/nrd1008
        • Donlan RM.
        New approaches for the characterization of prosthetic joint biofilms.
        Clin Orthop Relat Res. 2005; : 12-19https://doi.org/10.1097/01.blo.0000175120.66051.29
        • Mah T-F.
        Biofilm-specific antibiotic resistance.
        Future Microbiol. 2012; 7: 1061-1072https://doi.org/10.2217/fmb.12.76
        • Høiby N
        • Ciofu O
        • Johansen HK
        • et al.
        The clinical impact of bacterial biofilms.
        Int J Oral Sci. 2011; 3: 55-65https://doi.org/10.4248/IJOS11026
        • Vergidis P
        • Greenwood-Quaintance KE
        • Sanchez-Sotelo J
        • Morrey BF
        • Steinmann SP
        • Karau MJ
        • et al.
        Implant sonication for the diagnosis of prosthetic elbow infection.
        J shoulder Elb Surg. 2011; 20: 1275-1281https://doi.org/10.1016/j.jse.2011.06.016
        • Sampedro MF
        • Huddleston PM
        • Piper KE
        • Karau MJ
        • Dekutoski MB
        • Yaszemski MJ
        • et al.
        A biofilm approach to detect bacteria on removed spinal implants.
        Spine (Phila Pa 1976). 2010; 35: 1218-1224https://doi.org/10.1097/BRS.0b013e3181c3b2f3
        • Rothenberg AC
        • Wilson AE
        • Hayes JP
        • O'Malley MJ
        • Klatt BA
        Sonication of arthroplasty implants improves accuracy of periprosthetic joint infection cultures.
        Clin Orthop Relat Res. 2017; 475: 1827-1836https://doi.org/10.1007/s11999-017-5315-8
        • Mills L
        • Tsang J
        • Hopper G
        • Keenan G
        • Simpson AHRW.
        The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection.
        Bone Joint Res. 2016; 5: 512-519https://doi.org/10.1302/2046-3758.510.BJR-2016-0138
        • Stucken C
        • Olszewski DC
        • Creevy WR
        • Murakami AM
        • Tornetta P.
        Preoperative diagnosis of infection in patients with nonunions.
        J Bone Joint Surg Am. 2013; 95: 1409-1412https://doi.org/10.2106/JBJS.L.01034
        • Metsemakers WJ
        • Morgenstern M
        • McNally MA
        • Moriarty TF
        • McFadyen I
        • Scarborough M
        • et al.
        Fracture-related infection: a consensus on definition from an international expert group.
        Injury. 2018; 49: 505-510https://doi.org/10.1016/j.injury.2017.08.040
        • Foruria AM
        • Fox TJ
        • Sperling JW
        • Cofield RH.
        Clinical meaning of unexpected positive cultures (UPC) in revision shoulder arthroplasty.
        J shoulder Elb Surg. 2013; 22: 620-627https://doi.org/10.1016/j.jse.2012.07.017
        • Purudappa PP
        • Sharma OP
        • Priyavadana S
        • Sambandam S
        • Villafuerte JA.
        Unexpected positive intraoperative cultures (UPIC) in revision Hip and knee arthroplasty- A review of the literature.
        J Orthop. 2020; 17: 1-6https://doi.org/10.1016/j.jor.2019.06.028
        • Kheir MM
        • Tan TL
        • Ackerman CT
        • Modi R
        • Foltz C
        • Parvizi J.
        Culturing periprosthetic joint infection: number of samples, growth duration, and organisms.
        J Arthroplasty. 2018; 33 (.e1): 3531-3536https://doi.org/10.1016/j.arth.2018.06.018
        • Parvizi J
        • Tan TL
        • Goswami K
        • Higuera C
        • Della Valle
        • Chen AF
        The 2018 Definition of periprosthetic hip and knee infection: an evidence-based and validated criteria.
        J Arthroplasty. 2018; 33 (e2.): 1309-1314https://doi.org/10.1016/j.arth.2018.02.078
        • Mancheño-Losa M
        • Lora-Tamayo J
        • Fernández-Sampedro M
        • Rodríguez-Pardo D
        • Muñoz-Mahamud E
        • Soldevila L
        • et al.
        Prognosis of unexpected positive intraoperative cultures in arthroplasty revision: a large multicenter cohort.
        J Infect. 2021; 83: 542-549https://doi.org/10.1016/j.jinf.2021.09.001
        • Akgün D
        • Peters P-M
        • Maziak N
        • Plachel F
        • Minkus M
        • Moroder P.
        High rate of unexpected positive cultures in presumed aseptic revision of stiff shoulders after proximal humerus osteosynthesis.
        BMC Musculoskelet Disord. 2020; 21: 393https://doi.org/10.1186/s12891-020-03430-y
        • Saleh A
        • Guirguis A
        • Klika AK
        • Johnson L
        • Higuera CA
        • Barsoum WK.
        Unexpected positive intraoperative cultures in aseptic revision arthroplasty.
        J Arthroplasty. 2014; 29: 2181-2186https://doi.org/10.1016/j.arth.2014.07.010
        • Padegimas EM
        • Lawrence C
        • Narzikul AC
        • Zmistowski BM
        • Abboud JA
        • Williams GR
        • et al.
        Future surgery after revision shoulder arthroplasty: the impact of unexpected positive cultures.
        J Shoulder Elb Surg. 2017; 26: 975-981https://doi.org/10.1016/j.jse.2016.10.023
        • Neufeld ME
        • Lanting BA
        • Shehata M
        • Naudie DDR
        • McCalden RW
        • Teeter MG
        • et al.
        The prevalence and outcomes of unexpected positive intraoperative cultures in presumed aseptic revision knee arthroplasty.
        J Arthroplasty. 2022; (Published online)https://doi.org/10.1016/j.arth.2022.05.036
        • Hodakowski AJ
        • Cohn MR
        • Mehta N
        • Menendez ME
        • McCormick JR
        • Garrigues GE.
        An evidence-based approach to managing unexpected positive cultures in shoulder arth.
        J shoulder Elb Surg. 2022; (Published online)https://doi.org/10.1016/j.jse.2022.03.019
        • Hipfl C
        • Mooij W
        • Perka C
        • Hardt S
        • Wassilew GI.
        Unexpected low-grade infections in revision hip arthroplasty for aseptic loosening : a single-institution experience of 274 hips.
        Bone Joint J. 2021; 103-B: 1070-1077https://doi.org/10.1302/0301-620X.103B6.BJJ-2020-2002.R1
        • Kloos J
        • Vander Linden K
        • Vermote S
        • Berger P
        • Vandenneucker H.
        Prevalence, interpretation, and management of unexpected positive cultures in revision TKA: a systematic review.
        Knee Surg Sports Traumatol Arthrosc. 2022; (Published online)https://doi.org/10.1007/s00167-021-06856-6
        • Neufeld ME
        • Lanting BA
        • Shehata M
        • Howard JL
        • MacDonald SJ
        • Teeter MG
        • et al.
        Prevalence and outcomes of unexpected positive intraoperative cultures in presumed aseptic revision hip arthroplasty.
        J Bone Joint Surg Am. 2021; 103: 1392-1401https://doi.org/10.2106/JBJS.20.01559
        • Moher D
        • Liberati A
        • Tetzlaff J
        • Altman DG.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
      1. Appendix D. Quality Assessment Forms - Celiac Disease - NCBI Bookshelf. Accessed June 5, 2022. Available at: https://www-ncbi-nlm-nih-gov.ezproxy.lib.ucalgary.ca/books/NBK35156/.

        • Borenstein M
        • Rothstein H
        Comprehensive Meta-Analysis. Biostat. 1999;
        • Higgins JPT
        • Thompson SG.
        Quantifying heterogeneity in a meta-analysis.
        Stat Med. 2002; 21: 1539-1558https://doi.org/10.1002/sim.1186
        • Higgins JPT
        • Thompson SG
        • Deeks JJ
        • Altman DG.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560https://doi.org/10.1136/bmj.327.7414.557
      2. Converting Among Effect Sizes. Introd to meta-analysis. Published online, 2009:45-49. https://doi.org/10.1002/9780470743386.ch7.

        • Deeks JJ
        • Higgins JPT
        • Altman DG.
        Analysing data and undertaking meta-analyses.
        Cochrane Handb Syst Rev Interv. 2008; (Published online): 243-296https://doi.org/10.1002/9780470712184.ch9
        • Hozo SP
        • Djulbegovic B
        • Hozo I.
        Estimating the mean and variance from the median, range, and the size of a sample.
        BMC Med Res Methodol. 2005; 5: 13https://doi.org/10.1186/1471-2288-5-13
        • Plaass C
        • Hasler CC
        • Heininger U
        • Studer D.
        Bacterial colonization of VEPTR implants under repeated expansions in children with severe early onset spinal deformities.
        Eur Spine J. 2015; 25: 549-556https://doi.org/10.1007/s00586-015-4003-1
        • Shifflett GD
        • Bjerke-Kroll BT
        • Nwachukwu BU
        • Kueper J
        • Burket J
        • Sama AA
        • et al.
        Microbiologic profile of infections in presumed aseptic revision spine surgery.
        Eur Spine J. 2016; 25: 3902-3907https://doi.org/10.1007/s00586-016-4539-8
        • Hu X
        • Lieberman IH.
        Revision spine surgery in patients without clinical signs of infection: how often are there occult infections in removed hardware?.
        Eur Spine J. 2018; 27: 2491-2495https://doi.org/10.1007/s00586-018-5654-5
        • Leitner L
        • Malaj I
        • Sadoghi P
        • Amerstorfer F
        • Glehr M
        • Vander K
        • et al.
        Pedicle screw loosening is correlated to chronic subclinical deep implant infection: a retrospective database analysis.
        Eur Spine J. 2018; 27: 2529-2535https://doi.org/10.1007/s00586-018-5592-2
        • Wagner L
        • Braunschweig L
        • Eiffert H
        • Tsaknakis K
        • Kamin D
        • D’Este E
        • et al.
        Detection of bacteria colonizing titanium spinal implants in children.
        Surg Infect (Larchmt). 2018; 19: 71-77https://doi.org/10.1089/sur.2017.185
        • Ohrt-Nissen S
        • Fritz B
        • Valentin L
        • Kragh KN
        • Manniche C
        • Dahl B
        • et al.
        Is pseudarthrosis after spinal instrumentation caused by a chronic infection?.
        Eur Spine J. 2019; 28: 2996-3002https://doi.org/10.1007/s00586-019-06004-2
        • Prinz V
        • Bayerl S
        • Renz N
        • Trampuz A
        • Czabanka M
        • Woitzik J
        • et al.
        High frequency of low-virulent microorganisms detected by sonication of pedicle screws: a potential cause for implant failure. 2019; 31: 424-429
        • Pumberger M
        • Bürger J
        • Akgün D
        • Putzier M
        • Strube P.
        Unexpected positive cultures in presumed aseptic revision spine surgery using sonication.
        Bone Jt J. 2019; 101 (B): 621-624https://doi.org/10.1302/0301-620X.101B5.BJJ-2018-1168.R1
        • Burkhard MD
        • Loretz R
        • Uçkay I
        • Bauer DE
        • Betz M
        • Farshad M.
        Occult infection in pseudarthrosis revision after spinal fusion.
        Spine J. 2020; 21: 370-376https://doi.org/10.1016/j.spinee.2020.10.015
        • Callanan TC
        • Abjornson C
        • Dicarlo E
        • Henry M
        • Sama AA
        • Girardi FP
        • et al.
        Prevalence of occult infections in posterior instrumented spinal fusion.
        Clin Spine Surg. 2020; 34: 25-31https://doi.org/10.1097/BSD.0000000000001014
        • Carlson BC
        • Hines JT
        • Robinson WA
        • Sebastian AS
        • Greenwood-Quaintance KE
        • Patel R
        • et al.
        Implant sonication versus tissue culture for the diagnosis of spinal implant infection.
        Physiol Behav. 2021; 176: 139-148https://doi.org/10.1097/BRS.0000000000003311.Implant
        • Steinhaus ME
        • Salzmann SN
        • Lovecchio F
        • Shifflett GD
        • Yang J
        • Kueper J
        • et al.
        Risk factors for positive cultures in presumed aseptic revision spine surgery.
        Spine (Phila Pa 1976). 2019; 44: 177-184https://doi.org/10.1097/BRS.0000000000002792
        • Siller S
        • Skrap B
        • Grabein B
        • Trabold R
        • Zausinger S
        • Tonn JC.
        Routine intraoperative microbiological smear testing in patients with reoperation after elective degenerative non ‑ instrumented spine surgery – useful or negligible adjunct.
        Acta Neurochir (Wien). 2022; (Published online): 891-901https://doi.org/10.1007/s00701-022-05132-x
        • Updegrove GF
        • Armstrong AD
        • Kim H-MM.
        Preoperative and intraoperative infection workup in apparently aseptic revision shoulder arthroplasty.
        J shoulder Elb Surg. 2015; 24: 491-500https://doi.org/10.1016/j.jse.2014.10.005
        • Levy O
        • Iyer S
        • Atoun E
        • et al.
        Propionibacterium acnes: an underestimated etiology in the pathogenesis of osteoarthritis?.
        J shoulder Elb Surg. 2013; 22: 505-511https://doi.org/10.1016/j.jse.2012.07.007
        • Lee MJ
        • Pottinger PS
        • Butler-Wu S
        • Bumgarner RE
        • Russ SM
        • Matsen FA
        Propionibacterium persists in the skin despite standard surgical preparation.
        J Bone Joint Surg Am. 2014; 96: 1447-1450https://doi.org/10.2106/JBJS.M.01474
        • Leeming JP
        • Holland KT
        • Cunliffe WJ.
        The microbial ecology of pilosebaceous units isolated from human skin.
        J Gen Microbiol. 1984; 130: 803-807https://doi.org/10.1099/00221287-130-4-803
        • Bachy M
        • Bouyer B
        • Vialle R.
        Infections after spinal correction and fusion for spinal deformities in childhood and adolescence.
        Int Orthop. 2012; 36: 465-469https://doi.org/10.1007/s00264-011-1439-8
        • Master DL
        • Poe-Kochert C
        • Son-Hing J
        • Armstrong DG
        • Thompson GH.
        Wound infections after surgery for neuromuscular scoliosis: risk factors and treatment outcomes.
        Spine (Phila Pa 1976). 2011; 36: E179-E185https://doi.org/10.1097/BRS.0b013e3181db7afe
        • Zhai Z
        • Li H
        • Qin A
        • Liu G
        • Liu X
        • Wu C
        • et al.
        Meta-analysis of sonication fluid samples from prosthetic components for diagnosis of infection after total joint arthroplasty.
        J Clin Microbiol. 2014; 52: 1730-1736https://doi.org/10.1128/JCM.03138-13
        • Kempthorne JT
        • Ailabouni R
        • Raniga S
        • Hammer D
        • Hooper G.
        Occult Infection in aseptic joint loosening and the diagnostic role of implant sonication.
        Biomed Res Int. 2015; 2015946215https://doi.org/10.1155/2015/946215
        • Onsea J
        • Depypere M
        • Govaert G
        • Kuehl R
        • Vandendriessche T
        • Morgenstern M
        • et al.
        Accuracy of tissue and sonication fluid sampling for the diagnosis of fracture-related infection: a systematic review and critical appraisal.
        J bone Jt Infect. 2018; 3: 173-181https://doi.org/10.7150/jbji.27840
        • Patel A
        • Calfee RP
        • Plante M
        • Fischer SA
        • Green A.
        Propionibacterium acnes colonization of the human shoulder.
        J shoulder Elb Surg. 2009; 18: 897-902https://doi.org/10.1016/j.jse.2009.01.023
        • Pesenti S
        • Pannu T
        • Andres-Bergos J
        • Lafage R
        • Smith JS
        • Glassman S
        • et al.
        What are the risk factors for surgical site infection after spinal fusion? A meta-analysis.
        Eur Spine J. 2018; 27: 2469-2480https://doi.org/10.1007/s00586-018-5733-7
        • Moore NF
        • Batten TJ
        • Hutton CE
        • White WJ
        • Smith CD.
        The management of the shoulder skin microbiome (Cutibacterium acnes) in the context of shoulder surgery: a review of the current literature.
        Shoulder Elb. 2021; 13: 592-599https://doi.org/10.1177/1758573220945226