Highlights
- •Lipid accumulated in lumbar multifidus and erector spinae after bedrest
- •Lipid accumulation is distributed inhomogeneously in lumbar muscles after bedrest
- •Lipid accumulated more in medial and/or lateral than central region of lumbar multifidus
- •Inhomogeneous spatial lipid accumulation may influence lumbar spine function
Abstract
BACKGROUND CONTEXT
PURPOSE
STUDY DESIGN
PATIENT SAMPLE
OUTCOME MEASURES
METHODS
RESULTS
CONCLUSIONS
Keywords
Introduction
- McNamara KP
- Greene KA
- Moore AM
- Lenchik L
- Weaver AA
- De Martino E
- Hides J
- Elliott JM
- Hoggarth M
- Zange J
- Lindsay K
- et al.
Methods
Study Design
- De Martino E
- Hides J
- Elliott JM
- Hoggarth M
- Zange J
- Lindsay K
- et al.
Artificial gravity
MRI Measurements

Statistical analysis
Results
Intramuscular lipid concentration at BDC
Intramuscular lipid concentration in LM muscle after HDTBR

Lumbar multifidus | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Group | Quartile | Mixed model repeated measures ANOVA | |||||
Q1 | Q2 | Q3 | Q4 | Quartiles | Groups | Quartiles*Groups | ||
L1/L2 intervertebral disc | CRTL | 3.3±2.9 | 1.2±2.2 | 0.8±1.6 | 0.5±3.3 | F1.8,38.0=2.01; p=.122 η2partial=0.09 | F2,21=0.85; p=.441 η2partial=0.75 | F3.6, 38.0=1.41; p=.224 η2partial=0.12 |
cAG | 2.5±2.3 | 1.9±2.8 | 2.1±2.3 | 2.0±2.8 | ||||
iAG | 1.0±2.8 | 0.2±2.1 | 0.5±2.4 | 1.9±4.4 | ||||
L2/L3 intervertebral disc | CRTL | 2.2±2.9 | 2.2±2.2 | 1.1±1.7 | 1.1±3.9 | F1.8,39.4=1.26; p=.297 η2partial=0.06 | F2,21=; p= η2partial= | F3.7, 39.4=0.95; p=.444 η2partial=0.08 |
cAG | 2.7±1.5 | 1.5±1.0 | 1.2±2.4 | 1.4±3.5 | ||||
iAG | 2.6±1.3 | 2.4±1.9 | 2.5±2.0 | 2.1±3.5 | ||||
L3/L4 intervertebral disc | CRTL | 2.9±2.1 | 2.3±2.1 | 1.2±1.3 | 1.8±1.3 | F1.8,36.9=2.53; p=.099 η2partial=0.11 | F2,21=2.42; p=.113 η2partial=0.18 | F3.5,36.9=1.17; p=.34 η2partial=0.10 |
cAG | 5.0±2.7 | 2.8±1.3 | 1.9±1.4 | 5.3±6.1 | ||||
iAG | 2.5±1.6 | 2.6±1.7 | 2.3±1.6 | 2.9±1.7 | ||||
L4/L5 intervertebral disc | CRTL | 3.6±2.6 | 3.2±3.1 | 1.7±2.4 | 4.2±3.3 | F3,63=7.1; p<.001 η2partial=0.25 | F2,21=2.30; p=.125 η2partial=0.18 | F6,63=1.08; p=.38 η2partial=0.09 |
cAG | 5.6±1.7 | 4.4±2.6 | 2.2±2.7 | 6.5±3.7 | ||||
iAG | 3.7±1.5 | 4.9±2.7 | 2.9±2.2 | 5.0±2.8 | ||||
L5/S1 intervertebral disc | CRTL | 4.5±1.8 | 4.2±3.3 | 3.9±3.6 | 6.4±4.9 | F2.0,42.2=5.74; p=.006 η2partial=0.22 | F2,21=0.32; p=.729 η2partial=0.03 | F4.0,42.2=0.77; p=.547 η2partial=0.07 |
cAG | 6.3±2.5 | 4.2±3.5 | 3.1±4.4 | 7.7±5.6 | ||||
iAG | 4.8±1.3 | 2.6±1.7 | 3.1±3.2 | 7.0±5.8 |

Intramuscular lipid concentration in LES muscle after HDTBR
Lumbar erector spinae | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Group | Quartile | Mixed model repeated measures ANOVA | |||||
Q1 | Q2 | Q3 | Q4 | Quartiles | Groups | Quartiles*Groups | ||
L1/L2 intervertebral disc | CRTL | 1.9±2.9 | 2.2±2.6 | 1.6±2.1 | 0.5±0.6 | F2.7,46.4=3.28; p=.032 η2partial=0.14 | F2,21=0.49; p=.62 η2partial=0.04 | F4.4,46.4=0.18; p=.982 η2partial=0.02 |
cAG | 2.4±1.6 | 2.9±2.9 | 1.5±1.9 | 1.3±1.1 | ||||
iAG | 1.5±2.4 | 2.0±2.1 | 1.2±1.3 | 0.8±1.2 | ||||
L2/L3 intervertebral disc | CRTL | 2.1±1.3 | 3.2±2.6 | 1.8±1.5 | 1.4±1.5 | F1.9,41.2=9.82; p<.001 η2partial=0.32 | F2,21=0.54; p=.594 η2partial=0.05 | F3.9,41.2=0.79; p=.582 η2partial=0.07 |
cAG | 2.3±1.6 | 3.2±3.6 | 1.8±1.4 | 1.6±1.9 | ||||
iAG | 1.3±1.2 | 2.2±0.7 | 2.0±0.6 | 0.5±1.1 | ||||
L3/L4 intervertebral disc | CRTL | 3.3±3.2 | 2.7±1.5 | 2.5±1.9 | 2.1±1.9 | F2.0,36.1=1.89; p=.140 η2partial=0.08 | F2,21=0.62; p=.548 η2partial=0.06 | F3.4,36.1=2.54; p=.064 η2partial=0.19 |
cAG | 3.2±3.7 | 3.1±2.1 | 1.2±1.4 | 1.5±1.5 | ||||
iAG | 0.7±1.4 | 2.3±1.2 | 2.0±0.9 | 2.0±1.5 | ||||
L4/L5 intervertebral disc | CRTL | 4.6±2.9 | 2.9±2.3 | 2.2±1.5 | 2.5±3.5 | F2.2,45.3=0.80; p=.462 η2partial=0.04 | F2,21=2.84; p=.081 η2partial=0.21 | F4.32,45.3=2.04; p=.100 η2partial=0.16 |
cAG | 2.5±3.7 | 3.5±2.9 | 2.6±3.5 | 3.5±3.2 | ||||
iAG | -0.6±3.1 | 1.5±2.6 | 0.8±2.7 | 0.1±3.5 | ||||
L5/S1 intervertebral disc | CRTL | 4.4±3.7 | 2.2±2.1 | 2.0±1.6 | 3.5±2.9 | F2.1,43.1=1.80; p=.156 η2partial=0.08 | F2,21=1.12; p=.344 η2partial=0.09 | F4.1,43.1=1.79; p=.951 η2partial=0.02 |
cAG | 3.8±4.5 | 2.2±3.7 | 3.1±4.2 | 2.8±4.7 | ||||
iAG | 3.1±3.9 | 0.9±3.0 | 0.4±2.3 | 2.1±4.9 |

Intramuscular lipid concentration in PM and QL muscles after HDTBR
Psoas Major | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Group | Quartile | Mixed model repeated measures ANOVA | |||||
Q1 | Q2 | Q3 | Q4 | Quartiles | Groups | Quartiles*Groups | ||
L1/L2 intervertebral disc | CRTL | -1.5±0.6 | -0.8±1.9 | -1.5±1.9 | -1.0±2.5 | F1.6,33.6=0.03; p=.994 η2partial=0.01 | F2,21=0.76; p=.481 η2partial=0.07 | F3.2,33.6=0.55; p=.663 η2partial=0.05 |
cAG | -0.4±4.3 | -0.3±1.8 | 0.6±1.9 | 0.8±3.9 | ||||
iAG | 0.3±2.9 | 0.2±1.3 | -0.4±1.1 | -0.8±1.6 | ||||
L2/L3 intervertebral disc | CRTL | -1.0±3.1 | -0.7±1.1 | 0.7±1.2 | -0.2±1.5 | F1.7,36.0=0.14; p=.838 η2partial=0.01 | F2,21=1.03; p=.373 η2partial=0.09 | F3.4,36.0=0.25; p=.881 η2partial=0.02 |
cAG | 0.9±2.1 | -0.7±0.7 | -0.3±0.9 | -0.6±2.1 | ||||
iAG | 0.1±2.7 | 0.2±1.0 | -0.0±0.8 | -0.1±1.4 | ||||
L3/L4 intervertebral disc | CRTL | 0.1±1.7 | -0.3±1.5 | -0.2±1.3 | 0.08±1.1 | F1.9,41.1=0.52; p=.670 η2partial=0.03 | F2,21=0.09; p=.911 η2partial=0.01 | F3.9,41.1=1.17; p=.337 η2partial=0.10 |
cAG | -0.2±1.6 | 0.4±0.8 | -0.3±0.8 | 0.6±0.7 | ||||
iAG | 0.6±2.2 | -0.2±0.7 | -0.1±0.9 | -0.4±1.2 | ||||
L4/L5 intervertebral disc | CRTL | 0.7±2.3 | -0.1±1.4 | -0.1±0.9 | 0.0±2.2 | F1.7,35.8=0.12; p=.854 η2partial=0.01 | F2,21=1.12; p=.344 η2partial=0.09 | F3.8, 35.8=0.41; p=.770 η2partial=0.04 |
cAG | 0.0±2.2 | 0.8±1.0 | 0.2±1.2 | 0.4±1.6 | ||||
iAG | 0.5±2.2 | 0.3±1.5 | 0.4±0.3 | 0.3±1.2 | ||||
L5/S1 intervertebral disc | CRTL | -0.2±1.9 | -0.7±1.3 | -0.2±1.1 | -0.3±2.0 | F1.8,39.4=1.02; p=.390 η2partial=0.05 | F2,21=1.14; p=.340 η2partial=0.09 | F3.8,39.4=0.47; p=.745 η2partial=0.04 |
cAG | 0.8±2.7 | 0.8±1.8 | 1.0±2.4 | 2.0±2.9 | ||||
iAG | 1.3±3.3 | 0.8±3.1 | 1.0±3.0 | 1.2±3.4 |
Quadratus lumborum (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Group | Quartile | Mixed model repeated measures ANOVA | |||||
Q1 | Q2 | Q3 | Q4 | Quartiles | Groups | Quartiles*Groups | ||
L3/L4 intervertebral disc | CRTL | -0.9±2.1 | 0.2±2.8 | 0.5±2.9 | -0.4±4.0 | F1.7,37.3=1.85; p=.148 η2partial=0.08 | F2,21=0.36; p=.698 η2partial=0.03 | F3.6,37.3=1.02; p=.403 η2partial=0.09 |
cAG | 0.6±2.6 | 0.1±1.0 | -0.7±2.9 | -2.3±2.9 | ||||
iAG | 0.5±3.4 | 0.7±1.6 | -0.1±1.1 | -0.5±3.1 | ||||
L4/L5 intervertebral disc | CRTL | -0.9±3.3 | 0.0±2.9 | 0.6±1.8 | 0.0±3.0 | F2.1,43.5=0.67; p=.518 η2partial=0.03 | F2,21=0.18; p=.836 η2partial=0.02 | F4.1,43.5=2.27; p=.075 η2partial=0.18 |
cAG | 0.6±2.1 | -0.3±1.3 | -0.4±1.2 | -1.2±2.1 | ||||
iAG | 1.2±1.4 | -0.5±1.3 | -0.4±1.0 | 0.0±3.0 | ||||
L5/S1 intervertebral disc | CRTL | -1.2±2.0 | -0.3±0.9 | -0.2±1.1 | -1.2±1.9 | F2.2,46.7=2.29; p=.107 η2partial=0.10 | F2,21=0.64; p=.539 η2partial=0.06 | F4.4,46.7=0.64; p=.655 η2partial=0.06 |
cAG | -0.4±1.6 | -0.0±0.7 | 0.2±1.2 | -0.1±1.4 | ||||
iAG | -0.3±1.8 | -0.1±0.9 | 0.1±0.8 | -1.6±3.2 |


Discussion
Intramuscular lipid concentration in LM muscle
Intramuscular lipid concentration in LES muscle
Intramuscular lipid concentration in PM and QL muscles
- McNamara KP
- Greene KA
- Moore AM
- Lenchik L
- Weaver AA
- McNamara KP
- Greene KA
- Moore AM
- Lenchik L
- Weaver AA
Clinical implications for patients and operational relevance for spaceflight
Limitations
- De Martino E
- Salomoni SE
- Hodges PW
- Hides J
- Lindsay K
- Debuse D
- et al.
Conclusion
Declaration of competing interests
Acknowledgments
Appendix. Supplementary materials
References
- From the international space station to the clinic : how prolonged unloading may disrupt lumbar spine stability.Spine J. 2018; 18: 7-14https://doi.org/10.1016/j.spinee.2017.08.261
- Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the International Space Station.Spine (Phila Pa 1976). 2016; 41: 1917-1924https://doi.org/10.1097/BRS.0000000000001873
- Disc herniations in astronauts: What causes them, and what does it tell us about herniation on earth?.Eur Spine J. 2016; 25: 144-154https://doi.org/10.1007/s00586-015-3917-y
- The effects of exposure to microgravity and reconditioning of the lumbar multifidus and anterolateral abdominal muscles: implications for people with LBP.Spine J. 2020; : 1-14https://doi.org/10.1016/j.spinee.2020.09.006
- Muscle atrophy and changes in spinal morphology: Is the lumbar spine vulnerable after prolonged bed-rest?.Spine (Phila Pa 1976). 2011; 36: 137-145https://doi.org/10.1097/BRS.0b013e3181cc93e8
- Negative Effects of Long-duration Spaceflight on Paraspinal Muscle Morphology.Spine (Phila Pa 1976). 2019; 44: 879-886https://doi.org/10.1097/BRS.0000000000002959
- Changes in Structure and Function of the Back Muscles in Low Back Pain: Different Time Points, Observations, and Mechanisms.J Orthop Sport Phys Ther. 2019; 49: 464-476https://doi.org/10.2519/jospt.2019.8827
- Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?.BMC Med. 2007; 5: 1-10https://doi.org/10.1186/1741-7015-5-2
- Correlation between lumbar dysfunction and fat infiltration in lumbar multifidus muscles in patients with low back pain.BMC Musculoskelet Disord. 2017; : 1-9https://doi.org/10.1186/s12891-016-1376-1
- Fat infiltration in the lumbar multifidus and erector spinae muscles in subjects with sway-back posture.Eur Spine J. 2012; 21: 2158-2164https://doi.org/10.1007/s00586-012-2286-z
- Fat Replacement of Paraspinal Muscles with Aging in Healthy Adults.Med Sci Sports Exerc. 2017; 49: 595-601https://doi.org/10.1249/MSS.0000000000001119
- Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers.Am J Neuroradiol. 2015; 37: 742-748https://doi.org/10.3174/ajnr.A4596
- Geography of Lumbar Paravertebral Muscle.Spine (Phila Pa 1976). 2019; 44: 1294-1302https://doi.org/10.1097/BRS.000000 0000003060
- Lumbopelvic muscle changes following long-duration spaceflight.Front Physiol. 2019; 10https://doi.org/10.3389/fphys.2019.00627
- Multifidus Muscle Changes after Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.Spine (Phila Pa 1976). 2015; 40: 1057-1071https://doi.org/10.1097/BRS.0000000000000972
- Can proinflammatory cytokine gene expression explain multifidus muscle fiber changes after an intervertebral disc lesion?.Spine (Phila Pa 1976). 2014; 39: 1010-1017https://doi.org/10.1097/BRS.0000000000000318
- Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults.Spine J. 2015; 15: 1593-1601https://doi.org/10.1016/j.spinee.2015.03.039
- Association between paraspinal muscle morphology, clinical symptoms and functional status in patients with lumbar spinal stenosis.Eur Spine J. 2017; 26: 2543-2551https://doi.org/10.1007/s00586-017-5228-y
- The fatty degeneration of lumbar paraspinal muscles on computed tomography scan according to age and disc level.Spine J. 2017; 17: 81-87https://doi.org/10.1016/j.spinee.2016.08.001
- Confirming the geography of fatty infiltration in the deep cervical extensor muscles in whiplash recovery.Sci Rep. 2020; 10: 1-8https://doi.org/10.1038/s41598-020-68452-x
- The qualitative grading of muscle fat infiltration in whiplash using fat and water magnetic resonance imaging.Spine J. 2018; 18: 717-725https://doi.org/10.1016/j.spinee.2017.08.233
- The morphology multifidus of the human lumbar.Clin Biomech. 1986; 1: 196-204
- The morphology of the lumbar erector spinae.Spine (Phila Pa 1976). 1987; 12: 658-668
- Long-duration bed rest as an analog to microgravity.J Appl Physiol. 2016; 120: 891-903https://doi.org/10.1152/japplphysiol.00935.2015
- From space to Earth: Advances in human physiology from 20 years of bed rest studies.Eur J Appl Physiol. 2007; 101: 143-194https://doi.org/10.1007/s00421-007-0474-z
- Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions.Front Syst Neurosci. 2015; 9: 1-11https://doi.org/10.3389/fnsys.2015.00092
- The problem of artificial gravity: The current state and prospects.Hum Physiol. 2010; 36: 780-787https://doi.org/10.1134/s0362119710070078
- Lumbar muscle atrophy and increased relative intramuscular lipid concentration are not mitigated by daily artificial gravity following 60-day head-down tilt bed rest.J Appl Physiol. 2021; https://doi.org/10.1152/japplphysiol.00990.2020
- Short-arm centrifugation as a partially effective musculoskeletal countermeasure during 5-day head-down tilt bed rest—results from the BRAG1 study.Eur J Appl Physiol. 2015; 115: 1233-1244https://doi.org/10.1007/s00421-015-3120-1
- Effects of an artificial gravity countermeasure on orthostatic tolerance, blood volumes and aerobic power after short-term bed rest (BR-AG1).J Appl Physiol. 2015; 118: 29-35https://doi.org/10.1152/japplphysiol.00061.2014
- Guidelines for standardization of bed rest studies in the spaceflight context.International Academy of Astronautics (IAA). 2014; 1 (Internatio): 1-70
- Sixty days of head-down tilt bed rest with or without artificial gravity do not affect the neuromuscular secretome.Exp Cell Res. 2021; 399: 112463https://doi.org/10.1016/j.yexcr.2020.112463
- Tolerability of daily intermittent or continuous short-arm centrifugation during 60-day 6o head down bed rest (AGBRESA study).PLoS One. 2020; 15: 1-11https://doi.org/10.1371/journal.pone.0239228
- Cardiorespiratory and Neuromuscular Demand of Daily Centrifugation: Results From the 60-Day AGBRESA Bed Rest Study.Front Physiol. 2020; 11: 1-9https://doi.org/10.3389/fphys.2020.562377
- Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI.BMC Musculoskelet Disord. 2016; 17: 1-7https://doi.org/10.1186/s12891-016-1090-z
- Muscle-fat MRI: 1.5 Tesla and 3.0 Tesla versus histology.Muscle and Nerve. 2014; 50: 170-176https://doi.org/10.1002/mus.24255
- The biomechanics of the lumbar multifidus.Clin Biomech. 1986; 1: 205-213https://doi.org/10.1016/0268-0033(86)90147-6
- Deep and Superficial Fibers of the Lumbar Multifidus Muscle Are Differentially Active During Voluntary Arm Movements.Spine (Phila Pa 1976). 2002; 27: 29-36
- External perturbation of the trunk in standing humans differentially activates components of the medial back muscles.J Physiol. 2003; 547: 581-587https://doi.org/10.1113/jphysiol.2002.024950
- Lumbar muscles: Structure and function.Ann Med. 1989; 21: 353-359https://doi.org/10.3109/07853898909149220
- A universal model of the lumbar back muscles in the upright position.Spine (Phila Pa 1976). 1992; 17: 897-913
- Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading.Clin Orthop Relat Res. 1977; 129 (No): 156-164https://doi.org/10.1097/00003086-197711000-00018
- The fibre type composition of thoracic and lumbar paravertebral muscles in man.J Anat. 1985; 141: 131-137
- Intra-abdominal pressure and its role in spinal mechanics.Clin Biomech. 1987; 2: 168-174https://doi.org/10.1016/0268-0033(87)90010-6
- The role of abdominal pressure in relieving the pressure on the lumbar intervertebral discs.J Bone Joint Surg Br. 1957; 39: 718-725https://doi.org/10.1302/0301-620x.39b4.718
- Effect of changes in lordosis on mechanics of the lumbar spine-lumbar curvature in lifting.J Spinal Disord. 1999; 12: 426-447
- Mechanical stretch is a down-regulatory signal for differentation of C2C12 myogenic cells.Mater Sci Eng C. 2001; 17: 75-78https://doi.org/10.1016/S0928-4931(01)00340-X
- Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK.Mol Cells. 2008; 25: 479-486
- Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signaling.Biochem Biophys Res Commun. 2005; 329: 381-385https://doi.org/10.1016/j.bbrc.2005.01.136
- A reappraisal of the anatomy of the human lumbar erector spinae.J Anat. 1980; 131: 525-540
- The variations in intra-abdominal pressure and the activity of the abdominal muscles during breathing; a study in man.J Physiol. 1953; 122: 282-290
- Spinal stiffness changes throughout the respiratory cycle.J Appl Physiol. 2003; 95: 1467-1475https://doi.org/10.1152/japplphysiol.00939.2002
- Lung function during and after prolonged head-down bed rest.J Appl Physiol. 2002; 92: 75-83https://doi.org/10.1152/jappl.2002.92.1.75
- Multifidi Muscle Characteristics and Physical Function Among Older Adults With and Without Chronic Low Back Pain.Arch Phys Med Rehabil. 2017; 98: 51-57https://doi.org/10.1016/j.apmr.2016.07.027
- Lunar surface concept of operations for the global exploration roadmap lunar surface exploration scenario. IAC-21,A5,1,5,x66702.IAC-21,A5,1,5,x66702. IAA symposium on human exploration of the solar system, 2021
- Countermeasures against lumbar spine deconditioning in prolonged bed rest : resistive exercise with and without whole body vibration.J Appl Physiol. 2010; 109: 1801-1811https://doi.org/10.1152/japplphysiol.00707.2010
- Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest.Spine J. 2009; 9: 470-477https://doi.org/10.1016/j.spinee.2009.02.009
- Intermittent short-arm centrifugation is a partially effective countermeasure against upright balance deterioration following 60-day head-down tilt bed rest.J Appl Physiol. 2021; https://doi.org/10.1152/japplphysiol.00180.2021
Article info
Publication history
Footnotes
FDA device/drug status: Not applicable.
Author disclosures: DB: Nothing to disclose. DD: Nothing to disclose. EDM: Nothing to disclose. JC: Nothing to disclose. JS: Nothing to disclose. JZ: Nothing to disclose. KL: Nothing to disclose. MH: Nothing to disclose. NC: Grant: STFC/UK Space Agency (ST/R005753/1) (F). PH: Nothing to disclose. SS: Nothing to disclose. TW: Nothing to disclose. JE: Consulting: Orofacial Therapeutics (B). JH: Royalties: Elsevier -Book Royalties (B); Grants: Office of Health and Medical Research (Australia) (D); CRN/ACU research funding (Australia) (F); Brisbane Lions Football Club (Australia) (E); Queensland Academy of Sport (Australia) (C); AFL Research Board, Australia (B); Griffith University Health Group & Brisbane Lions FC (Australia) (B); Menzies Health Institute Queensland Collaborative Grant (Australia) (D). AW: Nothing to disclose.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy