Basic Science| Volume 10, ISSUE 11, P1024-1031, November 2010

Download started.


In vitro biomechanics of an expandable vertebral body replacement with self-adjusting end plates


      Background context

      Unstable burst fractures of the thoracolumbar spine may be treated surgically. Vertebral body replacements (VBRs) give anterior column support and, when used with supplemental fixation, impart rigidity to the injured segments. Although some VBRs are expandable, device congruity to the vertebral end plates is imprecise and may lead to stress risers and device subsidence.


      The objective of this study was to compare the rigidity of a VBR that self-adjusts to the adjacent vertebral end plates versus structural bone allograft and with an unsupported anterior column in a traumatic burst fracture reconstruction model.

      Study design

      Biomechanical flexibility testing with rod strain measurement.

      Patient sample

      Twelve T11–L3 human spine segments.

      Outcome measures

      Range of motion, neutral zone, and posterior fixation rod stress (moments).


      Flexibility testing was performed to±6 Nm in flexion-extension, lateral bending, and axial rotation on 12 intact human T11–L3 specimens. Burst fractures were created in L1, and flexibility testing was repeated in three additional states: subtotal corpectomy with posterior instrumentation (PI) only from T12 to L2, reconstruction with a femoral strut allograft and PI, and reconstruction with a VBR (with self-adjusting end plates) and PI. The PI consisted of pedicle screws and strain gage instrumented rods that were calibrated to measure rod stress via flexion-extension bending moments.


      There was no statistical difference in range of motion or neutral zone between the strut graft and VBR constructs, which both had less motion than the PI-only construct in flexion/extension and torsion and were both less than the intact values in flexion/extension and lateral bending (p<.05). Posterior rod moments were significantly greater for the PI-only construct in flexion/extension relative to the strut graft and VBR states (p=.03).


      This study, which simulated the immediate postoperative state, suggests that a VBR with self-adjusting end plate components has rigidity similar to the standard strut graft when combined with PI. Posterior rod stress was not significantly increased with this type of VBR compared with the strut graft reconstruction. The benefits of burst fracture stabilization using a self-adjusting VBR ultimately will not be known until long-term clinical studies are performed.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Spine Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • McAfee P.C.
        • Bohlman H.H.
        • Yuan H.A.
        Anterior decompression of traumatic thoracolumbar fractures with incomplete neurological deficit using a retroperitoneal approach.
        J Bone Joint Surg Am. 1985; 67: 89-104
        • McDonough P.W.
        • Davis R.
        • Tribus C.
        • et al.
        The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation.
        Spine. 2004; 29: 1901-1908
        • Sasso R.C.
        • Best N.M.
        • Reilly T.M.
        • et al.
        Anterior-only stabilization of three-column thoracolumbar injuries.
        J Spinal Disord Tech. 2005; 18: S7-S14
        • Schnee C.L.
        • Ansell L.V.
        Selection criteria and outcome of operative approaches for thoracolumbar burst fractures with and without neurological deficit.
        J Neurosurg. 1997; 86: 48-55
        • Kirkpatrick J.S.
        • Wilber R.G.
        • Likavec M.
        • et al.
        Anterior stabilization of thoracolumbar burst fractures using the Kaneda device: a preliminary report.
        Orthopedics. 1995; 18: 673-678
        • Bence T.
        • Schreiber U.
        • Grupp T.
        • et al.
        Two column lesions in the thoracolumbar junction: anterior, posterior or combined approach? A comparative biomechanical in vitro investigation.
        Eur Spine J. 2007; 16: 813-820
        • Kallemeier P.M.
        • Beaubien B.P.
        • Buttermann G.R.
        • et al.
        In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model.
        J Spinal Disord Tech. 2008; 21: 216-224
        • Knop C.
        • Blauth M.
        • Buhren V.
        • et al.
        [Surgical treatment of injuries of the thoracolumbar transition. 2: operation and roentgenologic findings].
        Unfallchirurg. 2000; 103: 1032-1047
        • Knop C.
        • Bastian L.
        • Lange U.
        • et al.
        Complications in surgical treatment of thoracolumbar injuries.
        Eur Spine J. 2002; 11: 214-226
        • Verlaan J.J.
        • Diekerhof C.H.
        • Buskens E.
        • et al.
        Surgical treatment of traumatic fractures of the thoracic and lumbar spine.
        Spine. 2004; 29: 803-814
        • Dai L.Y.
        • Jiang L.S.
        • Jiang S.D.
        Anterior-only stabilization using plating with bone structural autograft versus titanium mesh cages for two- or three-column thoracolumbar burst fractures: a prospective randomized study.
        Spine. 2009; 34: 1429-1435
        • Wood K.
        • Buttermann G.
        • Mehbod A.
        • et al.
        Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study.
        J Bone Joint Surg Am. 2003; 85: 773-781
        • Been H.D.
        • Poolman R.W.
        • Ubags L.H.
        Clinical outcome and radiographic results after surgical treatment of post-traumatic thoracolumbar kyphosis following simple type A fractures.
        Eur Spine J. 2004; 13: 101-107
        • Dvorak M.F.
        • Kwon B.K.
        • Fisher C.G.
        • et al.
        Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection.
        Spine. 2003; 28: 902-908
        • Lange U.
        • Edeling S.
        • Knop C.
        • et al.
        Anterior vertebral body replacement with a titanium implant of adjustable height: a prospective clinical study.
        Eur Spine J. 2007; 16: 161-172
        • Sasso R.C.
        • Renkens K.
        • Hanson D.
        • et al.
        Unstable thoracolumbar burst fractures: anterior-only versus short-segment posterior fixation.
        J Spinal Disord Tech. 2006; 19: 242-248
        • Briem D.
        • Behechtnejad A.
        • Ouchmaev A.
        • et al.
        Pain regulation and health-related quality of life after thoracolumbar fractures of the spine.
        Eur Spine J. 2007; 16: 1925-1933
        • Defino H.L.
        • Canto F.R.
        Low thoracic and lumbar burst fractures: radiographic and functional outcomes.
        Eur Spine J. 2007; 16: 1934-1943
        • Siebenga J.
        • Leferink V.J.
        • Segers M.J.
        • et al.
        A prospective cohort study comparing the VAS spine score and Roland-Morris disability questionnaire in patients with a type A traumatic thoracolumbar spinal fracture.
        Eur Spine J. 2008; 17: 1096-1100
        • Arts M.P.
        • Peul W.C.
        Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients.
        Neurosurgery. 2008; 63: 537-544
        • Disch A.C.
        • Knop C.
        • Schaser K.D.
        • et al.
        Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation.
        Spine. 2008; 33: 1429-1437
      1. Rose PS, Buchl EH, Adickes MS et al. Early subsidence of expandable anterior vertebral body cages. 38th Annual Meeting of the Scoliosis Research Society; September 10–13, 2003; Quebec City, Canada.

        • Fayazi A.H.
        • Ludwig S.C.
        • Dabbah M.
        • et al.
        Preliminary results of staged anterior debridement and reconstruction using titanium mesh cages in the treatment of thoracolumbar vertebral osteomyelitis.
        Spine J. 2004; 4: 388-395
        • Palissery V.
        • Mulholland R.C.
        • McNally D.S.
        The implications of stress patterns in the vertebral body under axial support of an artificial implant.
        Med Eng Phys. 2009; 31: 833-837
        • Polikeit A.
        • Ferguson S.J.
        • Nolte L.P.
        • et al.
        Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis.
        Eur Spine J. 2003; 12: 413-420
        • Wang X.
        • Dumas G.A.
        Evaluation of effects of selected factors on inter-vertebral fusion-a simulation study.
        Med Eng Phys. 2005; 27: 197-207
        • Kumar N.
        • Judith M.R.
        • Kumar A.
        • et al.
        Analysis of stress distribution in lumbar interbody fusion.
        Spine (Phila Pa 1976). 2005; 30: 1731-1735
        • Lowe T.G.
        • Hashim S.
        • Wilson L.A.
        • et al.
        A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support.
        Spine (Phila Pa 1976). 2004; 29: 2389-2394
        • An H.S.
        • Singh K.
        • Vaccaro A.R.
        • et al.
        Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws.
        Spine. 2004; 29: 257-262
        • Eichholz K.M.
        • Hitchon P.W.
        • From A.
        • et al.
        Biomechanical testing of anterior and posterior thoracolumbar instrumentation in the cadaveric spine. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004.
        J Neurosurg Spine. 2004; 1: 116-121
        • Hitchon P.W.
        • Goel V.K.
        • Rogge T.
        • et al.
        Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines.
        Spine. 1999; 24: 213-218
        • Lim T.H.
        • An H.S.
        • Hong J.H.
        • et al.
        Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model.
        Spine. 1997; 22: 261-266
        • Pflugmacher R.
        • Schleicher P.
        • Schaefer J.
        • et al.
        Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine.
        Spine. 2004; 29: 1413-1419
        • Shono Y.
        • McAfee P.C.
        • Cunningham B.W.
        Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems.
        Spine. 1994; 19: 1711-1722
        • Rohlmann A.
        • Graichen F.
        • Kayser R.
        • et al.
        Loads on a telemeterized vertebral body replacement measured in two patients.
        Spine. 2008; 33: 1170-1179
        • Beaubien B.P.
        • Derincek A.
        • Lew W.D.
        • et al.
        In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, low-profile lumbar plate and posteriorly placed pedicle screws or translaminar screws.
        Spine. 2005; 30: 1846-1851
        • Panjabi M.M.
        • Oxland T.R.
        • Lin R.M.
        • et al.
        Thoracolumbar burst fracture. A biomechanical investigation of its multidirectional flexibility.
        Spine. 1994; 19: 578-585
        • Bensch F.V.
        • Koivikko M.P.
        • Kiuru M.J.
        • et al.
        The incidence and distribution of burst fractures.
        Emerg Radiol. 2006; 12: 124-129
        • Oner F.C.
        • van der Rijt R.R.
        • Ramos L.M.
        • et al.
        Changes in the disc space after fractures of the thoracolumbar spine.
        J Bone Joint Surg Br. 1998; 80: 833-839
        • Vaccaro A.R.
        • Baron E.M.
        • Sanfilippo J.
        • et al.
        Reliability of a novel classification system for thoracolumbar injuries: the Thoracolumbar Injury Severity Score.
        Spine. 2006; 31: S62-S69
        • Young P.C.
        • Petersilge C.A.
        MR imaging of the traumatized lumbar spine.
        Magn Reson Imaging Clin N Am. 1999; 7: 589-602
        • Buttermann G.R.
        • Beaubien B.P.
        Stiffness of prosthetic nucleus determines stiffness of reconstructed lumbar calf disc.
        Spine J. 2004; 4: 265-274
        • Flamme C.H.
        • Hurschler C.
        • Heymann C.
        • et al.
        Comparative biomechanical testing of anterior and posterior stabilization procedures.
        Spine. 2005; 30: E352-E362
        • Wahba G.M.
        • Bhatia N.
        • Bui C.N.
        • et al.
        Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model.
        Spine (Phila Pa 1976). 2010; 35: 278-285
        • Cripton P.A.
        • Jain G.M.
        • Wittenberg R.H.
        • et al.
        Load-sharing characteristics of stabilized lumbar spine segments.
        Spine. 2000; 25: 170-179
        • Wilke H.J.
        • Wenger K.
        • Claes L.
        Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants.
        Eur Spine J. 1998; 7: 148-154
        • Knop C.
        • Lange U.
        • Bastian L.
        • et al.
        Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine.
        Eur Spine J. 2000; 9: 472-485
        • Slosar Jr., P.J.
        • Patwardhan A.G.
        • Lorenz M.
        • et al.
        Instability of the lumbar burst fracture and limitations of transpedicular instrumentation.
        Spine. 1995; 20: 1452-1461
        • Rohlmann A.
        • Bergmann G.
        • Graichen F.
        Loads on an internal spinal fixation device during walking.
        J Biomech. 1997; 30: 41-47
        • Goel V.K.
        • Winterbottom J.M.
        • Weinstein J.N.
        A method for the fatigue testing of pedicle screw fixation devices.
        J Biomech. 1994; 27: 1383-1388
        • Huang P.
        • Gupta M.C.
        • Sarigul-Klijn N.
        • et al.
        Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
        Spine J. 2006; 6: 648-658
        • Wilke H.J.
        • Jungkunz B.
        • Wenger K.
        • et al.
        Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition.
        Anat Rec. 1998; 251: 15-19