Advertisement
Technical Report| Volume 9, ISSUE 7, P564-573, July 2009

Download started.

Ok

Interbody device endplate engagement effects on motion segment biomechanics

      Abstract

      Background Context

      Stand-alone nonbiologic interbody fusion devices for the lumbar spine have been used for interbody fusion since the early 1990s. However, most devices lack the stability found in clinically successful circumferential fusion constructs. Stability results from cage geometry and device/vertebral endplate interface integrity. To date, there has not been a published comparative biomechanical study specifically evaluating the effects of endplate engagement of interbody devices.

      Purpose

      Lumbar motion segments implanted with three different interbody devices were tested biomechanically to compare the effects of endplate engagement on motion segment rigidity. The degree of additional effect of supplemental posterior and anterior fixation was also investigated.

      Study Design/Setting

      A cadaveric study of interbody fusion devices with varying degrees of endplate interdigitation.

      Outcome Measures

      Implanted motion segment range of motion (ROM), neutral zone (NZ), stiffness, and disc height.

      Methods

      Eighteen human L23 and L45 motion segments were distributed into three interbody groups (n=6 each) receiving a polymeric (polyetheretherketone) interbody spacer with small ridges; a modular interbody device with endplate spikes (InFix, Abbott Spine, Austin, TX, USA); or dual tapered threaded interbody cages (LT [Lordotic tapered] cage; Medtronic, Memphis, TN, USA). Specimens were tested intact using a 7.5-Nm flexion-extension, lateral bending, and axial torsion flexibility protocol. Testing was repeated after implantation of the interbody device, anterior plate fixation, and posterior interpedicular fixation. Radiographic measurements determined changes in disc height and intervertebral lordosis. ROM and NZ were calculated and compared using analysis of variance.

      Results

      The interbody cages with endplate spikes or threads provided a statistically greater increase in disc height versus the polymer spacer (p=.01). Relative to intact, all stand-alone devices significantly reduced ROM in lateral bending by a mean 37% to 61% (p≤.001). The cages with endplate spikes or threads reduced ROM by ∼50% and NZ by ∼60% in flexion-extension (p≤.02). Only the cage with endplate spikes provided a statistically significant reduction in axial torsion ROM compared with the intact state (50% decrease, p<.001). Posterior fixation provided a significant reduction in ROM in all directions versus the interbody device alone (p<.001). Anterior plating decreased ROM over interbody device alone in flexion-extension and torsion but did not have additional effect on lateral bending ROM.

      Conclusion

      The cages with endplate spikes or threads provide substantial motion segment rigidity compared with intact in bending modes. Only the cages with endplate spikes were more rigid than intact in torsion. All devices experienced increased rigidity with anterior plating and even greater rigidity with posterior fixation. It appears that the endplate engagement with spikes may be beneficial in limiting torsion, which is generally difficult with other “stand-alone” devices tested in the current and prior reports.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Spine Journal
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stevens K.J.
        • Spenciner D.B.
        • Griffiths K.L.
        • et al.
        Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies.
        J Spinal Disord Tech. 2006; 19: 77-86
        • Nakano M.
        • Matsui H.
        • Ishihara H.
        • et al.
        Serial changes in trunk muscle performance after posterior lumbar surgery.
        Spine. 1999; 24: 1023-1028
        • Taylor H.
        • McGregor A.H.
        • Medhi-Zadeh S.
        • et al.
        The impact of self-retaining retractors on the paraspinal muscles during posterior spinal surgery.
        Spine. 2002; 27: 2758-2762
        • Sihvonen T.
        • Herno A.
        • Paljarvi L.
        • et al.
        Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome.
        Spine. 1993; 18: 575-581
        • Giannoudis P.V.
        • Dinopoulos H.
        • Tsiridis E.
        Bone substitutes: an update.
        Injury. 2005; 36: S20-S27
        • Kwon B.
        • Jenis L.G.
        Carrier materials for spinal fusion.
        Spine J. 2005; 5: 224S-230S
        • Stauffer R.N.
        • Coventry M.B.
        Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series.
        J Bone Joint Surg Am. 1972; 54: 756-768
        • Loguidice V.A.
        • Johnson R.G.
        • Guyer R.D.
        • et al.
        Anterior lumbar interbody fusion.
        Spine. 1988; 13: 366-369
        • Carl A.L.
        • Tranmer B.I.
        • Sachs B.L.
        Anterolateral dynamized instrumentation and fusion for unstable thoracolumbar and lumbar burst fractures.
        Spine. 1997; 22: 686-690
        • Kuslich S.D.
        • Ulstrom C.L.
        • Griffith S.L.
        • et al.
        The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial.
        Spine. 1998; 23: 1267-1278
        • Elias W.J.
        • Simmons N.E.
        • Kaptain G.J.
        • et al.
        Complications of posterior lumbar interbody fusion when using a titanium threaded cage device.
        J Neurosurg. 2000; 93: 45-52
      1. O'Dowd J, Lam K, Mulholland R, et al. BAK cage: the Nottingham results. Paper presented at the 13th Annual Meeting of the North American Spine Society. San Francisco, October 28--31, 1998. Abstract.

        • Sasso R.C.
        • Kitchel S.H.
        • Dawson E.G.
        A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device.
        Spine. 2004; 29: 113-122
        • Lekovic G.P.
        • Han P.P.
        • Kenny K.J.
        • et al.
        Bone dowels in anterior lumbar interbody fusion.
        J Spinal Disord Tech. 2007; 20: 374-379
        • McAfee P.C.
        • Cunningham B.W.
        • Lee G.A.
        • et al.
        Revision strategies for salvaging or improving failed cylindrical cages.
        Spine. 1999; 24: 2147-2153
        • Pitzen T.
        • Geisler F.H.
        • Matthis D.
        • et al.
        Motion of threaded cages in posterior lumbar interbody fusion.
        Eur Spine J. 2000; 9: 571-576
        • Pavlov P.W.
        • Spruit M.
        • Havinga M.
        • et al.
        Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts.
        Eur Spine J. 2000; 9: 224-229
        • Button G.
        • Gupta M.
        • Barrett C.
        • et al.
        Three- to six-year follow-up of stand-alone BAK cages implanted by a single surgeon.
        Spine J. 2005; 5: 155-160
        • Chen L.
        • Yang H.
        • Tang T.
        Cage migration in spondylolisthesis treated with posterior lumbar interbody fusion using BAK cages.
        Spine. 2005; 30: 2171-2175
        • Togawa D.
        • Bauer T.W.
        • Lieberman I.H.
        • Sakai H.
        Lumbar intervertebral body fusion cages: histological evaluation of clinically failed cages retrieved from humans.
        J Bone Joint Surg Am. 2004; 86: 70-79
        • Nibu K.
        • Panjabi M.M.
        • Oxland T.
        • Cholewicki J.
        Multidirectional stabilizing potential of BAK interbody spinal fusion system for anterior surgery.
        J Spinal Disord. 1997; 10: 357-362
        • Tsantrizos A.
        • Andreou A.
        • Aebi M.
        • Steffen T.
        Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs.
        Eur Spine J. 2000; 9: 14-22
        • Cain C.M.
        • Schleicher P.
        • Gerlach R.
        • et al.
        A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques.
        Spine. 2005; 30: 2631-2636
        • Spruit M.
        • Falk R.G.
        • Beckmann L.
        • et al.
        The in vitro stabilising effect of polyetheretherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion.
        Eur Spine J. 2005; 14: 752-758
        • Gerber M.
        • Crawford N.R.
        • Chamberlain R.H.
        • et al.
        Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model.
        Spine. 2006; 31: 762-768
        • Burton D.
        • McIff T.
        • Fox T.
        • et al.
        Biomechanical analysis of posterior fixation techniques in a 360 degrees arthrodesis model.
        Spine. 2005; 30: 2765-2771
        • Vadapalli S.
        • Robon M.
        • Biyani A.
        • et al.
        Effect of lumbar interbody cage geometry on construct stability: a cadaveric study.
        Spine. 2006; 31: 2189-2194
        • Beaubien B.P.
        • Derincek A.
        • Lew W.D.
        • Wood K.B.
        In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, low-profile lumbar plate and posteriorly placed pedicle screws or translaminar screws.
        Spine. 2005; 30: 1846-1851
        • Vishteh A.G.
        • Crawford N.R.
        • Chamberlain R.H.
        • et al.
        Biomechanical comparison of anterior versus posterior lumbar threaded interbody fusion cages.
        Spine. 2005; 30: 302-310
        • Burkus J.K.
        • Schuler T.C.
        • Gornet M.F.
        • Zdeblick T.A.
        Anterior lumbar interbody fusion for the management of chronic lower back pain: current strategies and concepts.
        Orthop Clin North Am. 2004; 35: 25-32
        • Wilke H.J.
        • Wenger K.
        • Claes L.
        Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants.
        Eur Spine J. 1998; 7: 148-154
        • Panjabi M.M.
        • Abumi K.
        • Duranceau J.
        • Crisco J.J.
        Biomechanical evaluation of spinal fixation devices: II. Stability provided by eight internal fixation devices.
        Spine. 1988; 13: 1135-1140
        • Cripton P.A.
        • Bruehlmann S.B.
        • Orr T.E.
        • et al.
        In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts.
        J Biomech. 2000; 33: 1559-1568
        • McKenna P.J.
        • Freeman B.J.
        • Mulholland R.C.
        • et al.
        A prospective, randomised controlled trial of femoral ring allograft versus a titanium cage in circumferential lumbar spinal fusion with minimum 2-year clinical results.
        Eur Spine J. 2005; 14: 727-737
        • Zdeblick T.A.
        • Phillips F.M.
        Interbody cage devices.
        Spine. 2003; 28: S2-S7
        • Ferrara L.A.
        • Secor J.L.
        • Jin B.H.
        • et al.
        A biomechanical comparison of facet screw fixation and pedicle screw fixation: effects of short-term and long-term repetitive cycling.
        Spine. 2003; 28: 1226-1234
        • Kuzhupilly R.R.
        • Lieberman I.H.
        • McLain R.F.
        • et al.
        In vitro stability of FRA spacers with integrated crossed screws for anterior lumbar interbody fusion.
        Spine. 2002; 27: 923-928
        • Rao R.D.
        • David K.S.
        • Wang M.
        Biomechanical changes at adjacent segments following anterior lumbar interbody fusion using tapered cages.
        Spine. 2005; 30: 2772-2776
        • Heth J.A.
        • Hitchon P.W.
        • Goel V.K.
        • et al.
        A biomechanical comparison between anterior and transverse interbody fusion cages.
        Spine. 2001; 26: E261-E267
        • Lavoie S.
        • Lindsey R.W.
        • Gugala Z.
        • et al.
        Load sharing and kinematics of threaded cages for lumbar interbody fusion.
        Clin Orthop Relat Res. 2003; 408: 174-179
        • Cagli S.
        • Crawford N.R.
        • Sonntag V.K.
        • Dickman C.A.
        • et al.
        Biomechanics of grade I degenerative lumbar spondylolisthesis. Part 2: treatment with threaded interbody cages/dowels and pedicle screws.
        J Neurosurg. 2001; 94: 51-60
        • Uzi E.A.
        • Dabby D.
        • Tolessa E.
        • Finkelstein J.A.
        Early retropulsion of titanium-threaded cages after posterior lumbar interbody fusion: a report of two cases.
        Spine. 2001; 26: 1073-1075
        • Punt I.M.
        • Visser V.M.
        • van Rhijn L.W.
        • et al.
        Complications and reoperations of the SB Charite lumbar disc prosthesis: experience in 75 patients.
        Eur Spine J. 2008; 1: 36-43
        • van Ooij A.
        • Oner F.C.
        • Verbout A.J.
        Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc.
        J Spinal Disord Tech. 2003; 16: 369-383
        • Oxland T.R.
        • Lund T.
        • Jost B.
        • et al.
        The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study.
        Spine. 1996; 21: 2558-2569
        • Oxland T.R.
        • Grant J.P.
        • Dvorak M.F.
        • Fisher C.G.
        Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies.
        Spine. 2003; 28: 771-777
        • Lowe T.G.
        • Hashim S.
        • Wilson L.A.
        • et al.
        A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support.
        Spine. 2004; 29: 2389-2394
        • Hasegawa K.
        • Ikeda M.
        • Washio T.
        • Hara T.
        An experimental study of porcine lumbar segmental stiffness by the distraction-compression principle using a threaded interbody cage.
        J Spinal Disord. 2000; 13: 247-252
        • Goh J.C.
        • Wong H.K.
        • Thambyah A.
        • Yu CS.
        Influence of PLIF cage size on lumbar spine stability.
        Spine. 2000; 25: 35-39
        • Beaubien B.P.
        • Mehbod A.A.
        • Kallemeier P.M.
        • et al.
        Posterior augmentation of an anterior lumbar interbody fusion: minimally invasive fixation versus pedicle screws in vitro.
        Spine. 2004; 29: E406-E412
        • Lund T.
        • Oxland T.R.
        • Jost B.
        • et al.
        Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density.
        J Bone Joint Surg Br. 1998; 80: 351-359
        • Phillips F.M.
        • Cunningham B.
        • Carandang G.
        • et al.
        Effect of supplemental translaminar facet screw fixation on the stability of stand-alone anterior lumbar interbody fusion cages under physiologic compressive preloads.
        Spine. 2004; 29: 1731-1736
        • Nydegger T.
        • Oxland T.R.
        • Hoffer Z.
        • et al.
        Does anterolateral cage insertion enhance immediate stabilization of the functional spinal unit? A biomechanical investigation.
        Spine. 2001; 26: 2491-2497
        • Kim S.M.
        • Lim T.J.
        • Paterno J.
        • et al.
        Biomechanical comparison: stability of lateral-approach anterior lumbar interbody fusion and lateral fixation compared with anterior-approach anterior lumbar interbody fusion and posterior fixation in the lower lumbar spine.
        J Neurosurg Spine. 2005; 2: 62-68
        • Volkman T.
        • Horton W.C.
        • Hutton W.C.
        Transfacet screws with lumbar interbody reconstruction: biomechanical study of motion segment stiffness.
        J Spinal Disord. 1996; 9: 425-432
        • Rathonyi G.C.
        • Oxland T.R.
        • Gerich U.
        • et al.
        The role of supplemental translaminar screws in anterior lumbar interbody fixation: a biomechanical study.
        Eur Spine J. 1998; 7: 400-407
        • Bozkus H.
        • Chamberlain R.H.
        • Perez Garza L.E.
        • et al.
        Biomechanical comparison of anterolateral plate, lateral plate, and pedicle screws-rods for enhancing anterolateral lumbar interbody cage stabilization.
        Spine. 2004; 29: 635-641
        • Schuler T.C.
        • Burkus J.K.
        • Gornet M.F.
        • et al.
        The correlation between preoperative disc space height and clinical outcomes after anterior lumbar interbody fusion.
        J Spinal Disord Tech. 2005; 18: 396-401
        • Rozumalski A.
        • Schwartz M.H.
        • Wervey R.
        • et al.
        The in vivo three-dimensional motion of the human lumbar spine during gait.
        Gait Posture. 2008; 28: 378-384
        • Crosbie J.
        • Roongtiwa V.
        • Smith R.
        Patterns of spinal motion during walking.
        Gait Posture. 1997; 5: 6-12
        • Mjoberg B.
        • Hansson L.I.
        • Selvik G.
        Instability of total hip prostheses at rotational stress. A roentgen stereophotogrammetric study.
        Acta Orthop Scand. 1984; 55: 504-506
        • Nunn D.
        • Freeman M.A.
        • Tanner K.E.
        • et al.
        Torsional stability of the femoral component of hip arthroplasty. Response to an anteriorly applied load.
        J Bone Joint Surg Br. 1989; 71: 452-455
        • Sugiyama H.
        • Whiteside L.A.
        • Kaiser A.D.
        Examination of rotational fixation of the femoral component in total hip arthroplasty. A mechanical study of micromovement and acoustic emission.
        Clin Orthop Relat Res. 1989; 249: 122-128
        • Harris W.H.
        • Mulroy Jr., R.D.
        • Maloney W.J.
        • et al.
        Intraoperative measurement of rotational stability of femoral components of total hip arthroplasty.
        Clin Orthop Relat Res. 1991; 266: 119-126
        • Alfaro-Adrian J.
        • Gill H.S.
        • Marks B.E.
        • Murray D.W.
        Mid-term migration of a cemented total hip replacement assessed by radiostereometric analysis.
        Int Orthop. 1999; 23: 140-144
        • Effenberger H.
        • Heiland A.
        • Ramsauer T.
        • et al.
        A model for assessing the rotational stability of uncemented femoral implants.
        Arch Orthop Trauma Surg. 2001; 121: 60-64

      Linked Article